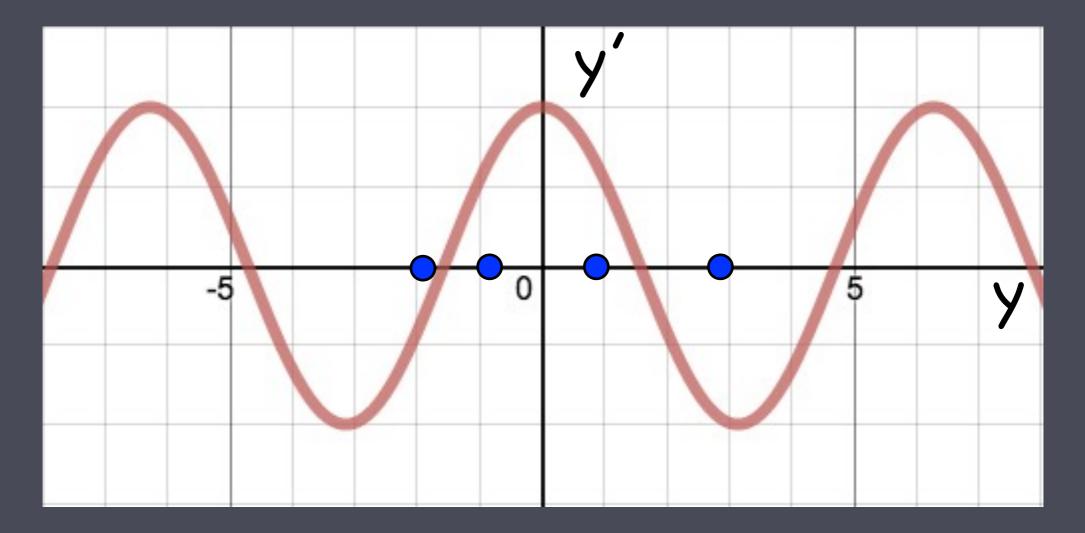
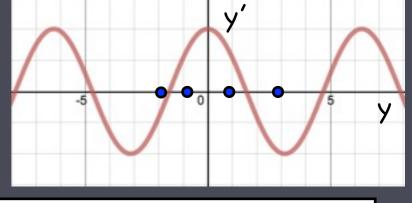
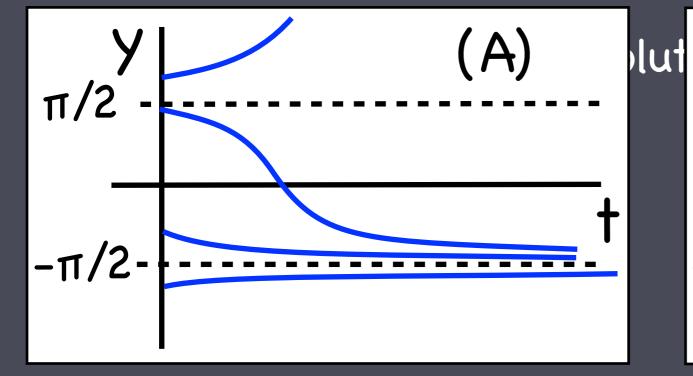
Today

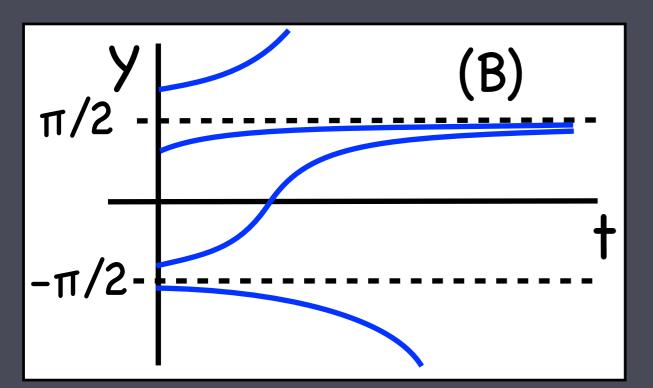
- Phase-line to solution-sketching example (cont).
- Logistic equation in many contexts
 - Classic example of the power of mathematics
 one unifying description for many
 apparently unrelated phenomena.

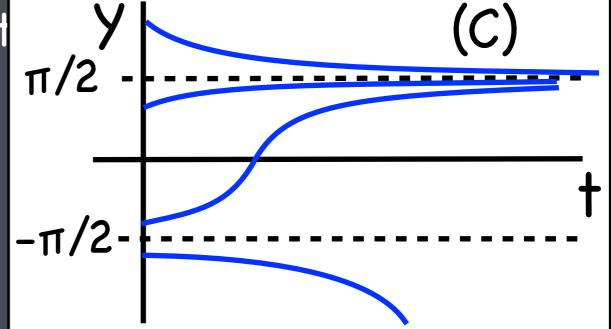
Sketch a few solutions y(t).

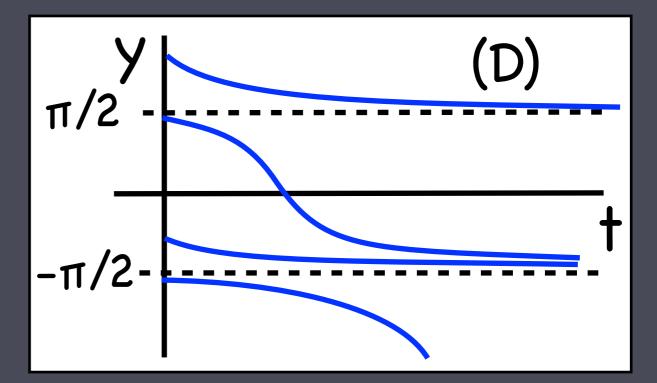


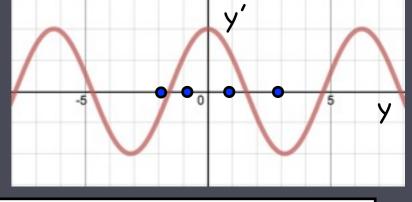


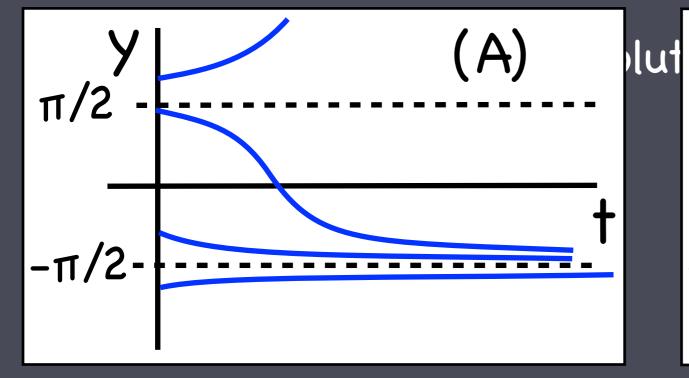


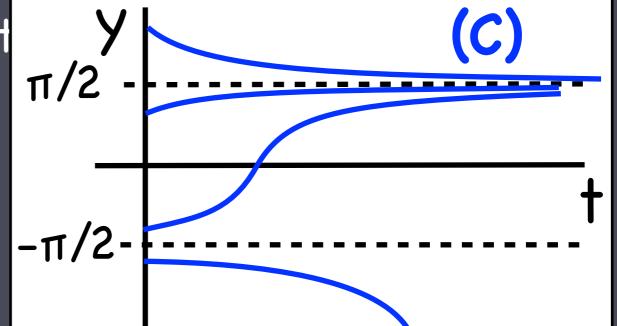


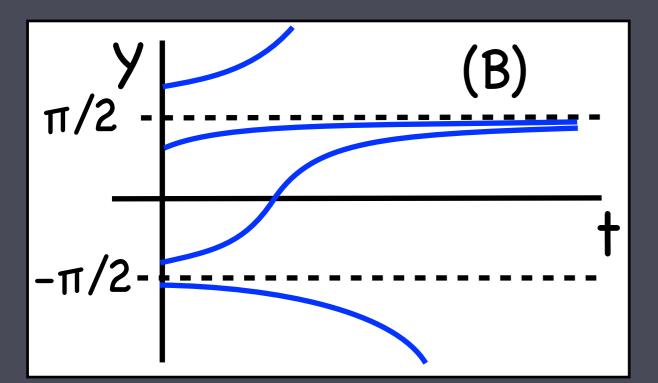


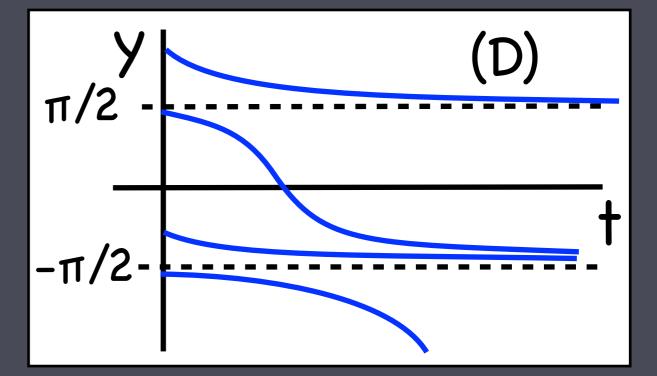






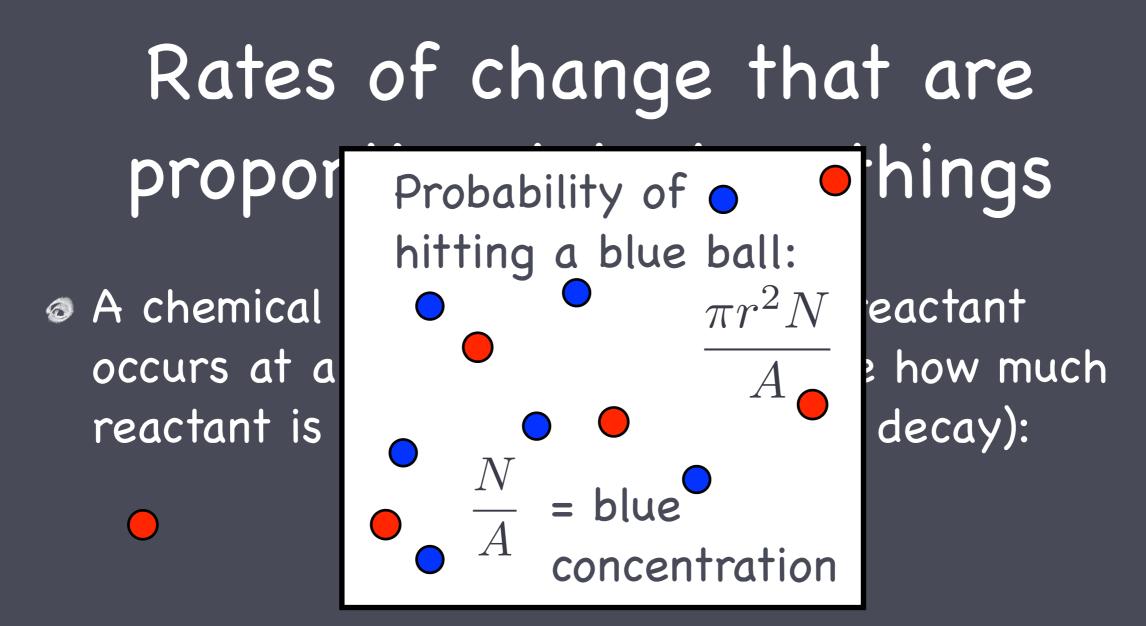






What you should be able to do:

- Identify steady states for a DE.
- Traw/interpret the phase line for a DE.
- Traw/interpret a slope field for a DE.
- Determine stability of steady states.
- Ø Determine long-term behaviour of solutions.
- Sketch the graphs of solutions using phase line and/or slope fields (slopes, concavity, IPs, hasymptotes).



A chemical reaction with two reactants occurs at a rate proportional to the how much of both reactants are present:

$$\frac{dR_1}{dt} = -kR_1R_2$$

Logistic equation in different contexts...

Rates of change that are proportional to two things

- Infectious disease: bSI (S=susceptible, I=infected)
- Spread of rumour: bNH (N = not heard rumour, H = heard rumour)
- Spread of new words: bNU (use word or not).
- Spread of new technologies: **bNU** (use tech or not).
- Active oil exploration sites: bUD (undiscovered and discovered).
- Waterlillies in a pond: bSW (waterlillies and space for waterwillies).

...two things that are just different forms of a single thing

When X meets Y, there's a chance Y turns into X.

$$\textcircled{O}$$
 Lose Y: $\frac{dY}{dt} = -bXY$ and gain X: $\frac{dX}{dt} = bXY$

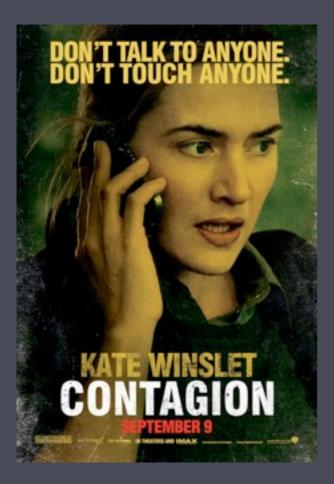
 \oslash X+Y= constant = C so Y=C-X.

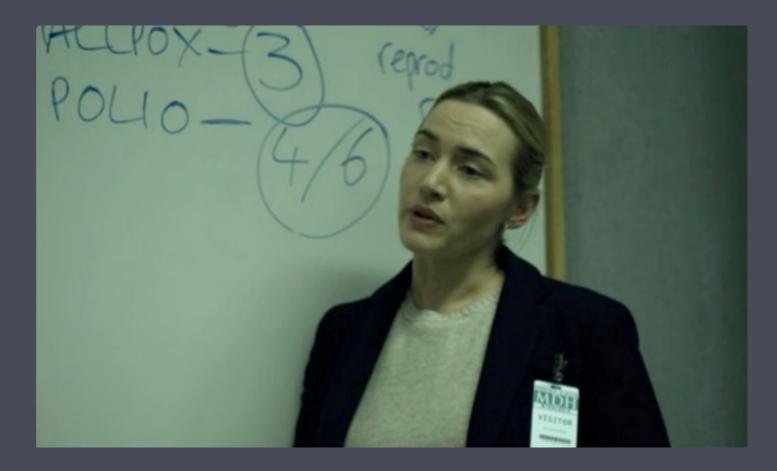
$$a \frac{dX}{dt} = bX(C - X)$$

Dr. Erin Mears: Once we know the R_0 , we'll be able to get a handle on the scale of the epidemic.

Minnesota Health #4: So, it's an epidemic now. An epidemic of what? **Dave:** We sent samples to the CDC.

Dr. Erin Mears: In seventy two hours, we'll know what it is, if we're lucky. **Minnesota Health #4:** Clearly, we're not lucky.





- \otimes N individuals, I of them have a flu, S=N-I do not.
- If everyone interacts, new cases appear at a rate proportional to SI.
- The DE describing the spread of disease:

(A)
$$\frac{dI}{dt} = -bI(N-I)$$
 (C) $\frac{dS}{dt} = -bSI$
(B) $\frac{dI}{dt} = bI(N-I)$ (D) $\frac{dI}{dt} = bSI$

- \otimes N individuals, I of them have a flu, S=N-I do not.
- If everyone interacts, new cases appear at a rate proportional to SI.
- The DE describing the spread of disease:

(A)
$$\frac{dI}{dt} = -bI(N-I)$$
 (C) $\frac{dS}{dt} = -bSI$
(B) $\frac{dI}{dt} = bI(N-I)$ (D) $\frac{dI}{dt} = bSI$
Compare this with $\frac{dP}{dt} = rP\left(1 - \frac{P}{K}\right)$.

6

What is the carrying capacity?

$$\frac{dI}{dt} = bI(N - I)$$

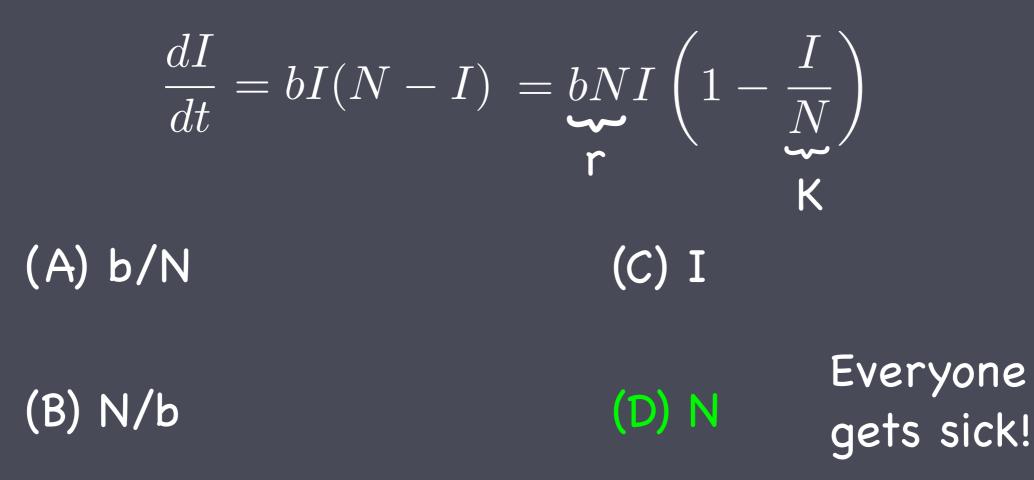
(A) b/N

(C) I

(B) N/b

(D) N

What is the carrying capacity?

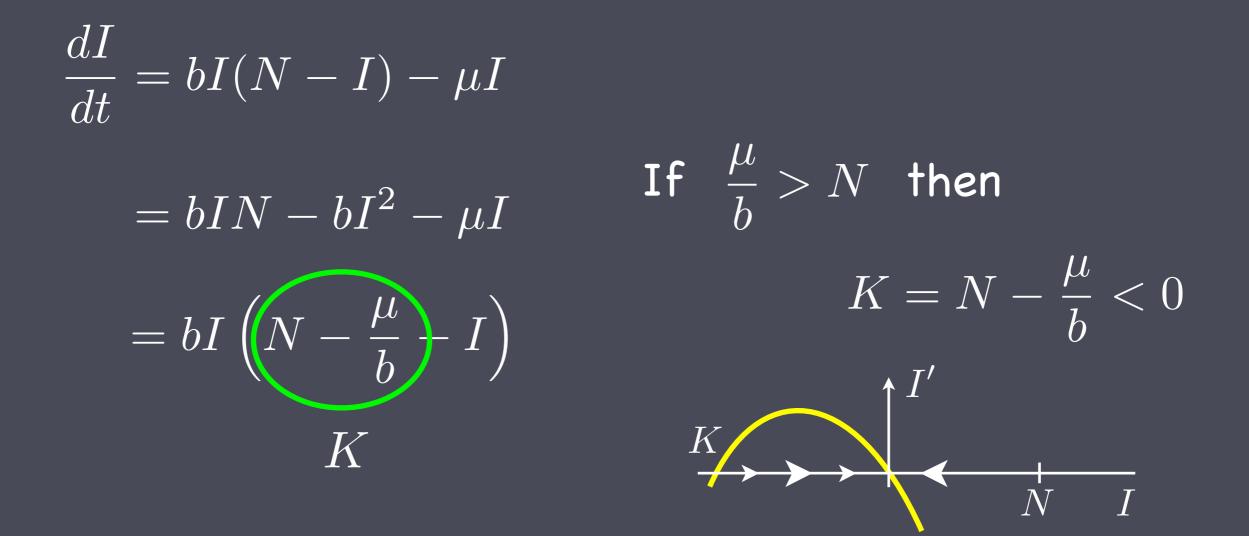


$$\frac{dP}{dt} = rP\left(1 - \frac{P}{K}\right)$$

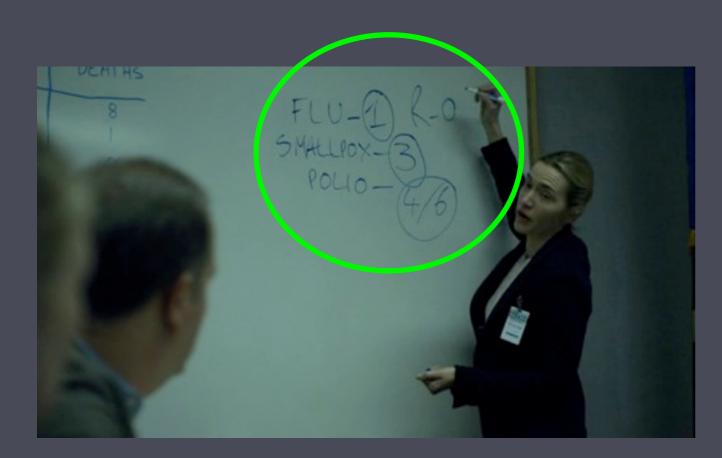
Saturday, November 15, 2014

- Suppose infected people recover at a rate proportional to how many there are.
- The DE describing the spread of disease with recovery:

(A)
$$\frac{dI}{dt} = bI(N-I) - \mu S$$
 (C) $\frac{dI}{dt} = -bI(N-I) + \mu I$
(B) $\frac{dI}{dt} = bI(N-I) - \mu I$ (D) $\frac{dI}{dt} = bI(N-I) + \mu I$



and the disease dies out.



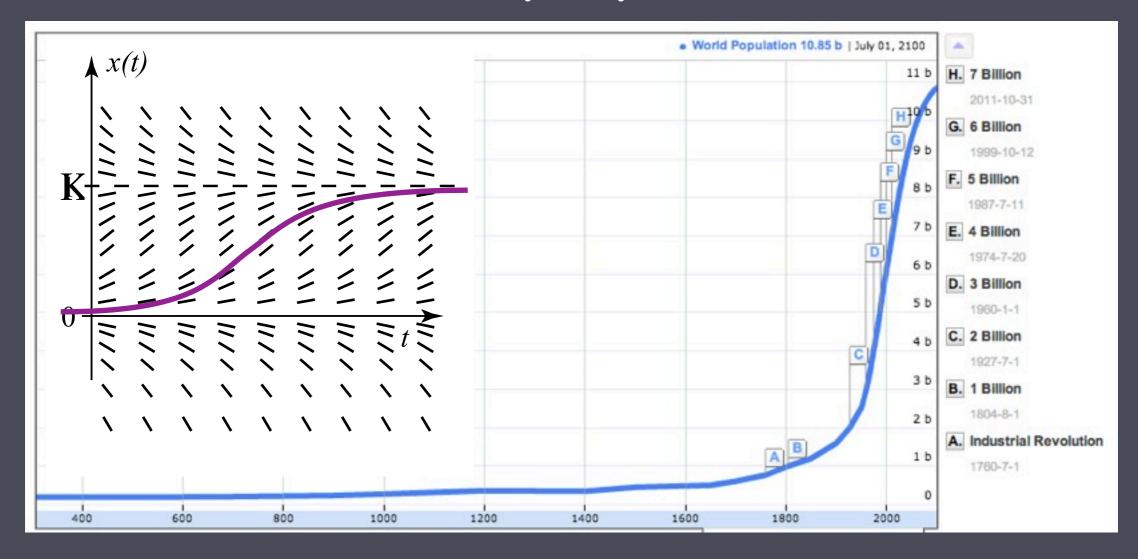
and the disease becomes an epidemic.

$$R_0 = \frac{Nb}{\mu} > 1$$

Some other logistic systems

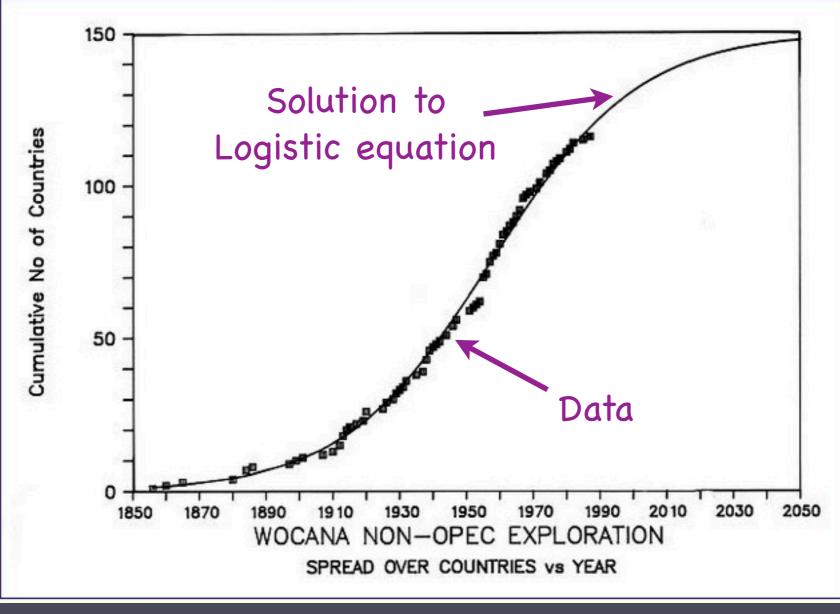
Saturday, November 15, 2014

Human population



We're past the inflection point - estimate K≈10 billion

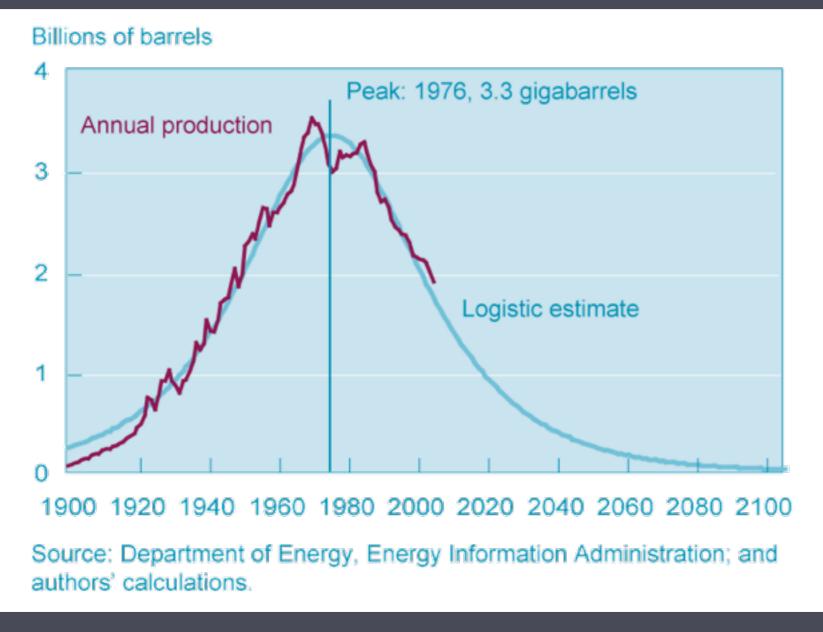
Number of countries with active oil exploration



http://www.mhnederlof.nl/kinghubbert.html

American peak oil production

Oil ecor about p rather t produce



n to quation vative

http://www.clevelandfed.org/research/commentary/2007/081507.cfm

World peak oil production

