

A second order differential equation.
Inverse trig functions review.
Derivatives of inverse trig functions.
Midterm - pick up today 11-12:30, 2:30-4, - Monday 11-12, Tuesday 10-4(??). Find a solution to the equation $y''=-a^2y$.

(A) $y = a \sin(x)$ (B) $y = a \cos(x)$ (C) $y = \sin(ax)$ (D) $y = \sin(a^{2}x)$ (E) $y = e^{ax}$ Find a solution to the equation $y''=-a^2y$.

(A) y = a sin(x)
(B) y = a cos(x)
(C) y = sin(ax) y=cos(ax) also solves it.
(D) y = sin(a²x)
(E) y = e^{ax}

This is a "second order" equation because it includes a second derivative of y(t).

Inverse trig $f(x) = sin(x) ---> f^{-1}(x) = arcsin(x)$

Inverse trig f(x) = sin(x) ---> f⁻¹(x) = arcsin(x) Flip sin(x) about y=x.

Inverse trig
f(x) = sin(x) ---> f⁻¹(x) = arcsin(x)
Flip sin(x) about y=x.
Many angles (x) have the same sin(x) so mirror image is not a function - must

choose favourite values for arcsin.

choose favourite values for arcsin.

5

2

-2

choose favourite values for arcsin.

5

-2

choose favourite values for arcsin.

sin(x)

2

The domain of arcsin is...

(A) (-π/2, π/2)
(B) [-π/2, π/2]
(C) [0, π]
(D) (-1, 1)
(E) [-1, 1]

The domain of arcsin is...

(A) (-π/2, π/2)
(B) [-π/2, π/2]
(C) [0, π]
(D) (-1, 1)
(E) [-1, 1]

The range for arcsin(x) is...

(A) [-1, 1](B) $[0, \pi]$ (C) $[-\pi, \pi]$ (D) $[-\pi/2, \pi/2]$ (E) (-infinity, infinity)

The range for arcsin(x) is...

(A) [-1, 1](B) $[0, \pi]$ (C) $[-\pi, \pi]$ (D) $[-\pi/2, \pi/2]$ (E) (-infinity, infinity)

The domain for arccos(x) is...

The domain for arccos(x) is...

The range for arccos(x) is...

The range for arccos(x) is...

The domain for arctan(x) is...

(A) [-pi/2, pi/2]
(B) (-pi/2, pi/2)
(C) [0, pi]
(D) [0, infinity]
(E) (-infinity, infinity)

The domain for arctan(x) is...

(A) [-pi/2, pi/2]
(B) (-pi/2, pi/2)
(C) [0, pi]
(D) [0, infinity]
(E) (-infinity, infinity)

The range for arctan(x) is...

(A) [-pi/2, pi/2]
(B) (-pi/2, pi/2)
(C) [0, pi]
(D) [0, infinity]
(E) (-infinity, infinity)

The range for arctan(x) is...

(A) [-pi/2, pi/2]
(B) (-pi/2, pi/2)

For ANY inverse function, find its derivative implicitly...

- For ANY inverse function, find its derivative implicitly...

- For ANY inverse function, find its derivative implicitly...
- \bigcirc y = arcsin(x)
- osin(y) = x <--- rewrite in inverted mode

- For ANY inverse function, find its derivative implicitly...
- o y = arcsin(x)
- sin(y) = x <--- rewrite in inverted mode
 </pre>
- $o \cos(y) y' = 1 < --- take implicit derivative$

For ANY inverse function, find its derivative implicitly...

sin(y) = x <--- rewrite in inverted mode
cos(y) y' = 1 <--- take implicit derivative
y' = 1/cos(y) = 1/cos(arcsin(x)) <--- solve for y'

(A) sqrt(1-x²)
(B) 1/sqrt(1-x²)
(C) x/sqrt(1-x²)
(D) sqrt(1-x²)/x
(E) 1/x

(A) $sqrt(1-x^2)$

(A) $sqrt(1-x^2)$

(A) $sqrt(1-x^2)$

(A) $sqrt(1-x^2)$

(A) $sqrt(1-x^2)$

(A) $sqrt(1-x^2)$

- For any inverse function, find its derivative implicitly...
- ø y = arcsin(x)
- sin(y) = x <--- rewrite in inverted mode
 cos(y) y' = 1 <--- take implicit derivative
 y' = 1/cos(y) = 1/cos(arcsin(x)) <--- solve for y'

- For any inverse function, find its derivative implicitly...
- sin(y) = x <--- rewrite in inverted mode
 cos(y) y' = 1 <--- take implicit derivative
 y' = 1/cos(y) = 1/cos(arcsin(x)) <--- solve for y'
 y' = 1/sqrt(1-x²)

Trig-related rates

These usually come down to a triangle that changes in time. For example...

Trig-related rates

These usually come down to a triangle that changes in time. For example...

If the height of a triangle with base 2 m changes at a rate h'=3 m/s, how quickly is the angle opposite the base changing when h=sqrt(3) m?

Relate the two changing quantities (h and θ): (A) $sin(\theta) = 2/h$ (B) $sin(\theta/2) = 1/h$ (C) $sin(\theta/2) = 1/sqrt(1+h^2)$ (D) $tan(\theta) = 2/h$ (E) $tan(\theta/2) = 1/h$