Last Time: Method of Separating Variables

Ch 9 Differential Equations

0) Model with differential eg.
1) Find Steady States / Determine stability / Determine when is inc/Dec
2) Method of sep. var. to solve initial value problems.

Steady States

Ref: An equilibrium/steady state/stable solution is a constant solution to a differential equation.

[i.e. when \(\frac{dy}{dt} = 0 \) for all \(t \)]

Ex of diff eqs:

\[
\frac{dy}{dt} = y(t-2) \quad \frac{dy}{dt} = y + t \quad \frac{dy}{dt} = 1 - y
\]

\[\text{Separable.} \quad \text{Not separable} \quad \text{Autonomous} \]

[i.e. of the form \(\frac{dy}{dt} = f(t)g(y) \)]

[i.e. of the form \(\frac{dy}{dt} = g(y) \)]
\[\frac{dy}{dt} = y(t-2) = 0 \]
\[\frac{dy}{dt} = y + t = 0 \]
\[\frac{dy}{dt} = -y = 0 \]

\[y = 0 \] steady state solution

\[y = -t \] Not a steady state solution.

\[y = 1 \] steady state solution.

\[\frac{dy}{dt} = 1 - y \] has steady state solution \(y = 1 \)

Graph of \(\frac{dy}{dt} \) vs. \(y \)

\[g(y) = 1 - y \]

\[\frac{dy}{dt} > 0 \]
\[\frac{dy}{dt} < 0 \]

\(y \) is inc. \(y \) is dec.

Phase Diagram.

Plotting solutions
Stable solution looks like \[y = c \]
Unstable solution looks like \[c \to \]
Saddle/semi-stable/neither looks like \[c \to c \to \]

Clicker #1

\[\frac{dy}{dx} = y(y-1)(y+2) \]

Does this have any stable solutions?

\[g(y) = y(y-1)(y+2) \]

Ex (Population growth/Decay)

Population will grow at a rate proportional to its size.

\[\frac{dp}{dt} \]

is proportional to \(P \).

\[\frac{dp}{dt} = k \cdot P \]

\(\frac{dp}{dt} \) autonomous and separable.
\[
\begin{align*}
\text{solve:} & \quad \frac{dp}{dt} = kp, \quad p(0) = p_0 \\
& \frac{1}{p} \frac{dp}{dt} = k \cdot dt \\
& \int \frac{1}{p} dp = \int k dt \\
& \ln|p| = kt + C_1 \\
& e^{kt + C_1} = p \\
& e^{kt} e^{C_1} = p \\
& C_2 e^{kt} = p \\
& C_2 e^{k \cdot 0} = p_0 \\
& C_2 = p_0 \\
& p(t) = p_0 e^{kt}
\end{align*}
\]

For \(k > 0 \):

- \(\frac{dp}{dt} = kp \)
- \(p' \rightarrow p \)
- \(g(p) = kp \)
- \(p_20 \)
- \(P(t) = p_0 e^{kt} \)
- \(P(t) = p_0 e^{kt} \)

For \(k < 0 \):

- \(g(p) = kp \)
- \(\frac{dp}{dt} = kp \)
- \(\text{stable} \)
- \(P(t) = p_0 e^{kt} \)
Clicker #2

Population Double every year from births

25% mortality rate.

\[\frac{dp}{dt} = \text{rate of growth} - \text{rate of decline} \]

\[\frac{dp}{dt} = 2P - 25\% \text{ of } P \]

The differential equation is:

\[\frac{dp}{dt} = 2P - \frac{1}{4}P \]

\[= \frac{7}{4}P \]

Ex (Logistic Growth)

Population grows at a rate proportional to its size times 10% from capacity (K).

\[\frac{dp}{dt} = \alpha \cdot P \cdot \frac{K-P}{K} \]

(assume \(\alpha > 0 \))

\[\frac{dp}{dt} = \alpha \cdot P \cdot \frac{K-P}{K} = 0 \]

when \(P = 0 \) or \(K \).

\[K \]

When \(P = 0.5K \),

\[K \]

unstable. Stable
Find the solution.

\[\frac{dP}{dt} = \alpha P \left(\frac{k-P}{k} \right) \]

\[\frac{1}{P} \int \frac{k}{k-P} \, dP = \alpha \int dt \]

\[\int \frac{k}{P(k-P)} \, dP = \int \alpha \, dt \]

Partial fractions,

\[\frac{k}{P(k-P)} = \frac{A}{P} + \frac{B}{k-P} \]

\[K = A(k-P) + B \cdot P \]

\[P=0, \quad K = A \cdot k + 0 \]

\[1 = A \]

\[P=k, \quad K = 0 + B \cdot k \]

\[1 = B \]

\[\int \frac{1}{P} + \frac{1}{k-P} \, dP = \alpha \int dt + C_1 \]

\[\ln |P| + \ln |k-P| = \alpha t + C_2 \]

\[\ln \left(\frac{P}{k-P} \right) = \alpha t + C_2 \]
\[e^{xt} + C_2 = \frac{P}{K-P} \]

\[C_3 e^{xt} = \frac{P}{K-P} \quad P(0) = P_0 \]

\[C_3 e^{x^0} = \frac{P_0}{K-P_0} \]

\[C_3 = \frac{P_0}{K-P_0} \]

\[\frac{P_0}{K-P_0} e^{xt} = \frac{P}{K-P} \]

\[\text{algebra} \]

\[\therefore P(t) = \left(\frac{K}{P_0} \right) e^{xt} + 1 \]

\[\text{Ex (Newton's Law of Cooling)} \]

\[\frac{dT}{dt} = \alpha \left(T_s - T \right) \]

\[\text{(assume } \alpha > 0) \]

\[\text{rate of temperature change of an object is proportional to the difference between its temperature and the surrounding temperature (Ts)} \]
A cup of tea is 100°C and the room is 20°C. What is the temperature at time t of the cup of tea?

\[\frac{dT}{dt} = K \left(T_0 - T \right) \]

\[\frac{1}{T_0 - T} \frac{dT}{dt} = K dt \]

\[-\ln |T_0 - T| = kt + C_1 \]

\[\ln |20 - T| = -kt - C_2 \]

\[C_1 = 20 - 1 \]

\[C_3 e^{-kt} = 20 - 1 \]

\[C_3 e^0 = 20 - 100 \]

\[C_3 = -80 \]
\[-80 e^{-kt} = 20 - T \]

\[T = 20 + 80 e^{-kt} \]

Check \(T(0) = 100 \) \(\Rightarrow \) All initial conditions we want.

\[t \to \infty \Rightarrow T \to 20 \]

\[\text{Ex.} \quad \text{(Modeling Diseases)} \]

\[\alpha \cdot I \cdot S \]

Susceptibles. \(\text{(Not sick now)} \)

Infected. \(\text{(Sick Now)} \)

\[\frac{dS}{dt} = -\alpha IS \]

\[\frac{dI}{dt} = \alpha IS \]

\[\Rightarrow \quad \frac{dI}{dt} = \alpha I(1-I) \]
\[g(t) = dI(1-I) \]

\[\frac{dI}{dt} = aIS - \beta I \]

\[= dI(1-I) - \beta I \]

\[= aI - aI^2 - \beta I \]

\[= I(\alpha - \beta - \alpha I) \]

Zeros \(\alpha + \gamma \), \(\alpha - \beta - \alpha I = 0 \)

\[\frac{\alpha - \beta}{\alpha} = I \]

\[I \] is less than 1
\[1 - \frac{\beta}{\alpha} > 0 \quad \Rightarrow \quad \alpha > \beta\]

\[1 - \frac{\beta}{\alpha} < 0 \quad \Rightarrow \quad \alpha < \beta\]

Some part of the population is always sick.

disease dies out.