Question 1
(2 points) Use the Intermediate Value Theorem (and your calculator) to show that the equation

\[e^x = 5 - x \]

has a solution in the interval \([1, 2]\). Find the solution’s first two decimal digits after the dot (you must justify your answer using the Intermediate Value Theorem).

Solution: Write \(f(x) = e^x + x \). We need to show that the equation

\[f(x) = 5 \]

has a solution in the interval \([1, 2]\) and find its first two decimal digits after the dot.

The function \(f(x) \) is everywhere continuous (because it is elementary), so we may apply the IVT to any interval.

- \(f(1) = 3.718... \)
 - \(f(2) = 9.389... \)
 - \(f(1) < 5 < f(2) \)
 - By the IVT, \(f(x) = 5 \) has a solution in the interval \((1, 2)\).

We now narrow the interval containing the solution until we can be certain of what are the first two decimal digits of the solution.

- \(f(1.5) = 5.981... \)
 - \(f(1) < 5 < f(1.5) \)
 - By the IVT, \(f(x) = 5 \) has a solution in the interval \((1, 1.5)\).

- \(f(1.25) = 4.740... \)
 - \(f(1.25) < 5 < f(1.5) \)
 - By the IVT, \(f(x) = 5 \) has a solution in the interval \((1.25, 1.5)\).

- \(f(1.37) = 5.305... \)
 - \(f(1.37) < 5 < f(1.37) \)
 - By the IVT, \(f(x) = 5 \) has a solution in the interval \((1.25, 1.37)\).

- \(f(1.31) = 5.016... \)
 - \(f(1.25) < 5 < f(1.31) \)
 - By the IVT, \(f(x) = 5 \) has a solution in the interval \((1.25, 1.31)\).

- \(f(1.28) = 4.876... \)
 - \(f(1.28) < 5 < f(1.31) \)
 - By the IVT, \(f(x) = 5 \) has a solution in the interval \((1.28, 1.31)\).

- \(f(1.29) = 4.922... \)
 - \(f(1.29) < 5 < f(1.31) \)
 - By the IVT, \(f(x) = 5 \) has a solution in the interval \((1.29, 1.31)\).

- \(f(1.30) = 4.969... \)
 - \(f(1.30) < 5 < f(1.31) \)
 - By the IVT, \(f(x) = 5 \) has a solution in the interval \((1.30, 1.31)\).

To conclude, the solution to the equation \(e^x = 5 - x \) (or \(f(x) = 5 \)) has the form

\[x = 1.30... \]

Question 2
(2 points) Differentiate the following functions:
1. \(\frac{x^2}{x^3+1} \)

\[
\frac{d}{dx} \left(\frac{x^2}{x^3+1} \right) = \frac{(x^2)'(x^3+1) - (x^2)(x^3+1)'}{(x^3+1)^2} = \frac{(2x)(x^3+1) - x^2(3x^2)}{(x^3+1)^2} \\
= \frac{2x^4 + 2x - 3x^4}{(x^3+1)^2} = \frac{-x^4 + 2x}{(x^3+1)^2}
\]

2. \(x^2 \cdot \ln x \cdot \cos x \)

\[
\frac{d}{dx} (x^2 \cdot \ln x \cdot \cos x) = (x^2)' \cdot \ln x \cdot \cos x + x^2 \cdot (\ln x)' \cdot \cos x + x^2 \cdot \ln x \cdot (\cos x)' \\
= 2x \ln x \cdot \cos x + x^2 \cdot \frac{1}{x} \cdot \cos x + x^2 \cdot \ln x \cdot (-\sin x) \\
= 2x \ln x \cdot \cos x + x \cos x - x^2 \ln x \cdot \sin x
\]

3. \(\sqrt[3]{x} + \sqrt{e^x + 1} \)

\[
\frac{d}{dx} (\sqrt[3]{x} + \sqrt{e^x + 1}) = \frac{d}{dx} (x^{\frac{1}{3}} + \sqrt{e^x + 1}) \\
= \frac{1}{3}x^{-\frac{2}{3}} + \frac{1}{2\sqrt{e^x + 1}} \cdot (e^x + 1)' = \frac{1}{3}x^{-\frac{2}{3}} + \frac{e^x}{2\sqrt{e^x + 1}}
\]

4. \(\sqrt{\ln(e^x + \sin x)} \)

\[
\frac{d}{dx} \sqrt{\ln(e^x + \sin x)} = \frac{1}{2\sqrt{\ln(e^x + \sin x)}} \cdot (\ln(e^x + \sin x))' \\
= \frac{1}{2\sqrt{\ln(e^x + \sin x)}} \cdot \frac{1}{e^x + \sin x} \cdot (e^x + \sin x)' \\
= \frac{1}{2\sqrt{\ln(e^x + \sin x)}} \cdot \frac{1}{e^x + \sin x} \cdot (e^x + \cos x) \\
= \frac{e^x + \cos x}{2(e^x + \sin x)\sqrt{\ln(e^x + \sin x)}}
\]

Question 3 (2 points) Find the derivative of the following functions according to the limit definition of the derivative (no credit will be given for other methods).

(a) \(f(x) = \frac{1}{x^2+1} \)

\[
f'(a) = \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = \lim_{x \to a} \frac{\left(\frac{1}{x^2+1} - \frac{1}{a^2+1}\right)}{x - a} \\
= \lim_{x \to a} \frac{\left(\frac{a^2-x^2}{(x^2+1)(a^2+1)}\right)}{x - a} = \lim_{x \to a} \frac{\left(\frac{(a-x)(a+x)}{(x^2+1)(a^2+1)}\right)}{-a - x} \\
= \lim_{x \to a} \frac{-(a+x)}{(x^2+1)(a^2+1)} = -\frac{2a}{(a^2+1)(a^2+1)} = -\frac{2a}{(a^2+1)^2}
\]
(b) \(f(x) = \sqrt{x^2 + x} \).

\[
f'(x) = \lim_{h \to 0} \frac{\sqrt{(x+h)^2 + (x+h) - \sqrt{x^2 + x}}}{h} \\
= \lim_{h \to 0} \frac{(\sqrt{(x+h)^2 + (x+h) - \sqrt{x^2 + x}}) \left(\sqrt{(x+h)^2 + (x+h) + \sqrt{x^2 + x}} \right)}{h \left(\sqrt{(x+h)^2 + (x+h) + \sqrt{x^2 + x}} \right)} \\
= \lim_{h \to 0} \frac{((x+h)^2 + (x+h)) - (x^2 + x)}{h \left(\sqrt{(x+h)^2 + (x+h) + \sqrt{x^2 + x}} \right)} \\
= \lim_{h \to 0} \frac{x^2 + 2hx + h^2 + x + h - x^2 - x}{h \left(\sqrt{(x+h)^2 + (x+h) + \sqrt{x^2 + x}} \right)} \\
= \lim_{h \to 0} \frac{h(2x + h + 1)}{h \left(\sqrt{(x+h)^2 + (x+h) + \sqrt{x^2 + x}} \right)} \\
= \lim_{h \to 0} \frac{(2x + h + 1)}{\left(\sqrt{(x+0)^2 + (x+0) + \sqrt{x^2 + x}} \right)} = \frac{2x + 1}{\sqrt{x^2 + x + \sqrt{x^2 + x}}} = \frac{2x + 1}{2\sqrt{x^2 + x}}
\]

Question 4 (2 points) Let \(f(x) = \begin{cases}
 x^3 - x & x > -1 \\
 2x + 2 & x \leq -1
\end{cases} \)

(a) Prove that \(f \) is differentiable at \(x = -1 \) and find \(f'(-1) \). (Hint: Compute the left and right limits of \(\frac{f(-1+h) - f(-1)}{h} \) as \(h \) approaches 0 separately.)

We have

\[
\lim_{h \to 0^+} \frac{f(-1+h) - f(-1)}{h} = \lim_{h \to 0^+} \frac{((-1+h)^3 - (-1+h)) - (2(-1) + 2)}{h} \\
= \lim_{h \to 0^+} \frac{(-1)^3 + 3(-1)^2 h + 3(-1)h^2 + h^3 + 1 - h - 0}{h} \\
= \lim_{h \to 0^+} \frac{2h - 3h^2 + h^3}{h} = \lim_{h \to 0^+} 2 - 3h + h^2 = 2
\]

\[
\lim_{h \to 0^-} \frac{f(-1+h) - f(-1)}{h} = \lim_{h \to 0^-} \frac{(2(-1+h) + 2) - 0}{h} = \lim_{h \to 0^-} \frac{2h}{h} = \lim_{h \to 0^-} 2 = 2
\]

Thus, \(\lim_{h \to -1} \frac{f(-1+h) - f(-1)}{h} \) exists and equals 2. This means that \(f \) is differentiable at \(x = -1 \) and \(f'(-1) = 2 \).

(b) Find a formula for \(f'(x) \) when \(x \neq -1 \), and draw the graph of \(f'(x) \) on the interval \(-3 \leq x \leq 1\).

When \(x > -1 \), we have \(f(x) = x^3 - x \), so \(f'(x) = 3x^2 - 1 \).

When \(x < -1 \), we have \(f(x) = 2x + 2 \), so \(f'(x) = 2 \).

Since \(f'(-1) = 2 \), we get

\[
f'(x) = \begin{cases}
 3x^2 - 1 & x > -1 \\
 2 & x \leq -1
\end{cases}
\]
Question 5 (2 points) Let \(f \) and \(g \) be differentiable functions.

1. Express the derivatives of the following functions using \(f \) and \(g \) and their derivatives:

\[
\frac{d}{dx}(x^2 f(x) - g(x)) = x^2 f'(x) - g'(x)
\]

\[
\frac{d}{dx}(f(x^2) - x^2 g(x)) = 2x f(x) - x^2 g'(x)
\]

2. It is given that

\[
f(2) = 2 \\
g(2) = 3 \\
f'(2) = -2 \\
g'(2) = 1
\]

Find the equation of the tangent line to the graph of \(y = f(x) + 1 \) at \(x = 2 \). (Recall: The equation of a line with slope \(m \) passing through a point \((a, b) \) is \(y = m(x-a) + b \).)

Solution: We have

\[
y' = \left(\frac{f(x) + 1}{g(x) + 1}\right)' = \frac{(f(x) + 1)'(g(x) + 1) - (f(x) + 1)(g(x) + 1)'}{(g(x) + 1)^2} \\
= \frac{f'(x)(g(x) + 1) - (f(x) + 1)g'(x)}{(g(x) + 1)^2}.
\]

Thus,

\[
y'(2) = \frac{f'(2)(g(2) + 1) - (f(2) + 1)g'(2)}{(g(2) + 1)^2} = \frac{(-2)(3 + 1) - (2 + 1) \cdot 1}{(3 + 1)^2} = -\frac{11}{16}
\]

We have \(y(2) = \frac{f(2) + 1}{g(2) + 1} = \frac{2+1}{3+1} = \frac{3}{4} \), so the equation of the tangent line at \(x = 2 \) is

\[
y - \frac{3}{4} = -\frac{11}{16}(x - 2) = -\frac{11}{16}x + \frac{11}{8},
\]

or equivalently,

\[
y = -\frac{11}{16}x + \frac{17}{8}
\]