OSH 2
Math 104 - Section 107

Question 1 (2 points) Use the Intermediate Value Theorem (and your calculator) to show that the equation
e*=5—=x

has a solution in the interval [1,2]. Find the solution’s first two decimal digits after the dot (you must justify your
answer using the Intermediate Value Theorem).
Solution: Write f(z) = e® + 2. We need to show that the equation

f(x) =5

has a solution in the interval [1,2] and find its first two decimal digits after the dot.
The function f(x) is everywhere continuous (because it is elementary), so we may apply the IVT to any interval.

o f(1)=3.718...
F(2) =9.389...
f(1) <5< f(2)

By the IVT, f(z) =5 has a solution in the interval (1,2).

We now narrow the interval containing the solution until we can be certain of what are the first two decimal digits
of the solution.

e f(1.5) =5.981...

f(1) <5< f(L.5)
By the IVT, f(x) =5 has a solution in the interval (1,1.5).

o f(1.25) = 4.740...
f(1.25) <5 < f(1.5)
By the IVT, f(x) =5 has a solution in the interval (1.25,1.5).

o f(1.37) = 5.305...
f(1.25) <5 < f(1.37)
By the IVT, f(x) =5 has a solution in the interval (1.25,1.37).

o f(1.31)=5.016...
F(1.25) < 5 < f(1.31)
By the IVT, f(z) =5 has a solution in the interval (1.25,1.31).

o f(1.28) = 4.876...
£(1.28) < 5 < f(1.31)
By the IVT, f(x) =5 has a solution in the interval (1.28,1.31).

o £(1.29) =4.922...
f(1.29) <5 < f(1.31)
By the IVT, f(x) =5 has a solution in the interval (1.29,1.31).

o f(1.30) = 4.969...
f(1.30) < 5 < f(1.31)
By the IVT, f(z) =5 has a solution in the interval (1.30,1.31).

To conclude, the solution to the equation e =5 — x (or f(x) = 5) has the form

Question 2 (2 points) Differentiate the following functions:
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Question 3 (2 points) Find the derivative of the the following functions according to the limit definition of the derivative
(no credit will be given for other methods).
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Question 4 (2 points) Let
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(a) Prove that f is differentiable at x = —1 and find f/(—1). (Hint: Compute the left and right limits of W
as h approaches 0 separately.)
We have
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Thus, limy,_, 1 W exists and equals 2. This means that f is differentiable at = —1 and f'(—1) =
2.

(b) Find a formula for f’(x) when x # —1, and draw the graph of f/(z) on the interval —3 <z < 1.

When z > —1, we have f(z) =23 —z, so f'(z) = 32% — 1.
When z < —1, we have f(z) =2z + 2, so f'(x) = 2.
Since f/'(—1) = 2, we get
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Question 5 (2 points) Let f and g be differentiable functions.

1. Express the derivatives of the following functions using f, g and their derivatives:

Pf(x)—g(z),  f@*—g(x)).

2. It is given that

f(2)=2 9(2) =3
fl@)=-2 g(2)=1
Find the equation of the tangent line to the graph of y = gggﬁ at * = 2. (Recall: The equation of a line with

slope m passing through a point (a,b) is y = m(z — a) + b.)

Solution: We have
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We have y(2) = % = 3% = %, so the equation of the tangent line at x = 2 is
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