Assignment 1

Math 104 - Section 107

Question 1 (3.5 points)
The Happy Cookie Bakery is the only producer of cookies in the city of Vancouver. Let p be the price of a cookie (in dollars) and let q be the daily demand for cookies in Genovia. The bakery's owner estimates that the price and demand are related by the following equation:

$$
5000 p+2 q=20000
$$

(a) If the bakery sells each cookie for $1 \$$, how many cookies will be sold per day? What will be the factory's daily revenue? ($0.5 p t$)
We substitute $p=1$ in $5000 p+2 q=20000$ to get

$$
\begin{aligned}
& 5000+2 q=20000 \\
& 2 q=15000 \\
& q=7500
\end{aligned}
$$

Thus, 7500 cookies will be sold.
The daily revenue will be $R=p \cdot q=1 \cdot 7500=7500 \$$.
(b) Express the price p in terms of the demand q. ($0.5 p t$)

We solve $5000 p+2 q=20000$ for p :

$$
\begin{aligned}
& 5000 p+2 q=20000 \\
& 5000 p=20000-2 q \\
& p=\frac{20000-2 q}{5000}=4-\frac{q}{2500}
\end{aligned}
$$

(c) Express the revenue R as a function of q. (0.5pt)
$R=p q=\left(4-\frac{q}{2500}\right) \cdot q=4 q-\frac{q^{2}}{2500}$.
(d) Suppose that the daily production cost is $5000 \$$ to keep the bakery running plus $0.2 \$$ for every cookie baked. Express the bakery's daily profit (P) as a function of q. ($0.5 p t$)
The cost of producing q cookies is $C(q)=5000+0.2 q$. Therefore, the profit is:

$$
\begin{aligned}
P(q) & =R(q)-C(q) \\
& =\left(4 q-\frac{q^{2}}{2500}\right)-(5000+0.2 q) \\
& =4 q-\frac{q^{2}}{2500}-5000-0.2 q=-\frac{1}{2500} q^{2}+3.8 q-5000
\end{aligned}
$$

(e) Continuing (d), how many cookies should the bakery produce in order to maximize its profit? What should be the price of a cookie in this case? ($0.5 p t$)

The parabola $P(q)=-\frac{1}{2500} q^{2}+3.8 q-5000$ attains its maximum when

$$
q=-\frac{3.8}{2 \cdot(-1 / 2500)}=\frac{2500}{2} \cdot 3.8=4750
$$

The factory should produce 4750 cookies in order to maximize its profit. Using part (b), the price of each cookie should then be $4-\frac{4750}{2500}=2.1 \$$.
(f) Assume now that the cost of producing q cookies each day is $C(q)=a q+b$ dollars (a dollars for each cookie and b dollars to keep the bakery operating). Find a and b if the bakery's daily profit is maximized when $q=4000$ and the maximal daily profit is $5000 \$$. (1pt)
The profit is now given by:

$$
\begin{aligned}
P(q) & =R(q)-C(q) \\
& =\left(4 q-\frac{q^{2}}{2500}\right)-(a q+b) \\
& =4 q-\frac{q^{2}}{2500}-a q-b \\
& =-\frac{1}{2500} q^{2}+(4-a) q-b
\end{aligned}
$$

The parabola $-\frac{1}{2500} q^{2}+(4-a) q-b$ attains its maximum when $q=-\frac{4-a}{2 \cdot(-1 / 2500)}$. It is given the profit is maximal when $q=4000$, hence:

$$
\begin{aligned}
& -\frac{4-a}{2 \cdot(-1 / 2500)}=4000 \\
& -(4-a)=4000 \cdot 2 \cdot\left(-\frac{1}{2500}\right) \\
& a-4=-3.2 \\
& a=0.8
\end{aligned}
$$

We also know that the daily profit when $q=4000$ is $5000 \$$, hence:

$$
\begin{aligned}
& 5000=P(4000)=-\frac{1}{2500} 4000^{2}+(4-a) 4000-b \\
& 5000=-\frac{1}{2500} \cdot 4000^{2}+(4-0.8) 4000-b \\
& 5000=-6400+12800-b \\
& b=-6400+12800-5000 \\
& b=1400
\end{aligned}
$$

Question 2 (6.5 points) Compute the following limits:

1. $\lim _{x \rightarrow-2} \frac{x^{2}+4 x+4}{x^{2}+3 x+2}(0.5 p t)$

$$
\lim _{x \rightarrow-2} \frac{x^{2}+4 x+4}{x^{2}+3 x+2}=\lim _{x \rightarrow-2} \frac{(x+2)^{2}}{(x+2)(x+1)}=\lim _{x \rightarrow-2} \frac{(x+2)}{(x+1)}=\frac{(-2)+2}{(-2)+1}=\frac{0}{-1}=0
$$

2. $\lim _{x \rightarrow-2} \frac{x^{2}+2 x+2}{x^{2}+x+2}(0.5 p t)$

$$
\lim _{x \rightarrow-2} \frac{x^{2}+2 x+2}{x^{2}+x+2}=\frac{(-2)^{2}+2(-2)+2}{(-2)^{2}+(-2)+2}=\frac{2}{4}=\frac{1}{2}
$$

3. $\lim _{x \rightarrow-2} \frac{x^{3}+8}{x^{2}-4}\left(\right.$ Hint: $\left.a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)\right)(0.5 p t)$

$$
\lim _{x \rightarrow-2} \frac{x^{3}+8}{x^{2}-4}=\lim _{x \rightarrow-2} \frac{(x+2)\left(x^{2}-2 x+4\right)}{(x+2)(x-2)}=\lim _{x \rightarrow-2} \frac{\left(x^{2}-2 x+4\right)}{(x-2)}=\frac{(-2)^{2}-2(-2)+4}{(-2)-2}=\frac{12}{-4}=-3
$$

4. $\lim _{x \rightarrow 1} \frac{\sqrt{x^{2}+3}-2}{x-1}(0.5 p t)$

$$
\begin{aligned}
\lim _{x \rightarrow 1} \frac{\sqrt{x^{2}+3}-2}{x-1} & =\lim _{x \rightarrow 1} \frac{\left(\sqrt{x^{2}+3}-2\right)\left(\sqrt{x^{2}+3}+2\right)}{(x-1)\left(\sqrt{x^{2}+3}+2\right)}=\lim _{x \rightarrow 1} \frac{\left(x^{2}+3\right)-2^{2}}{(x-1)\left(\sqrt{x^{2}+3}+2\right)} \\
& =\lim _{x \rightarrow 1} \frac{x^{2}-1}{(x-1)\left(\sqrt{x^{2}+3}+2\right)}=\lim _{x \rightarrow 1} \frac{(x-1)(x+1)}{(x-1)\left(\sqrt{x^{2}+3}+2\right)} \\
& =\lim _{x \rightarrow 1} \frac{(x+1)}{\left(\sqrt{x^{2}+3}+2\right)}=\frac{1+1}{\sqrt{1^{2}+3}+2}=\frac{2}{4}=\frac{1}{2}
\end{aligned}
$$

5. $\lim _{x \rightarrow 0} \frac{x(x+2)}{\sqrt{x^{2}+x+1}-\sqrt{x^{2}+1}} \cdot(0.5 p t)$

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{x(x+2)}{\sqrt{x^{2}+x+1}-\sqrt{x^{2}+1}} & =\lim _{x \rightarrow 0} \frac{x(x+2)\left(\sqrt{x^{2}+x+1}+\sqrt{x^{2}+1}\right)}{\left(\sqrt{x^{2}+x+1}-\sqrt{x^{2}+1}\right)\left(\sqrt{x^{2}+x+1}+\sqrt{x^{2}+1}\right)} \\
& =\lim _{x \rightarrow 0} \frac{x(x+2)\left(\sqrt{x^{2}+x+1}+\sqrt{x^{2}+1}\right)}{\left(x^{2}+x+1\right)-\left(x^{2}+1\right)} \\
& =\lim _{x \rightarrow 0} \frac{x(x+2)\left(\sqrt{x^{2}+x+1}+\sqrt{x^{2}+1}\right)}{x} \\
& =\lim _{x \rightarrow 0}(x+2)\left(\sqrt{x^{2}+x+1}+\sqrt{x^{2}+1}\right) \\
& =(0+2)\left(\sqrt{0^{2}+0+1}+\sqrt{0^{2}+1}\right)=4
\end{aligned}
$$

6. Fact: $1+x \leq e^{x} \leq 1+x+x^{2}$ for all $0 \leq x \leq 1$.

Use the fact and the squeeze theorem to prove that $\lim _{x \rightarrow 0^{+}} \frac{e^{x}-1}{x}=1$. (1pt)
Proof: By the fact, for all $0<x \leq 1$, we have

$$
\begin{array}{ll}
1+x \leq e^{x} \leq 1+x+x^{2} & \\
x \leq e^{x}-1 \leq x+x^{2} & \\
\frac{x}{x} \leq \frac{e^{x}-1}{x} \leq \frac{x+x^{2}}{x} & \\
1 \leq \frac{e^{x}-1}{x} \leq 1+x &
\end{array}
$$

We have

$$
\begin{aligned}
& \lim _{x \rightarrow 0^{+}} 1=1 \\
& \lim _{x \rightarrow 0^{+}} 1+x=1+0=1
\end{aligned}
$$

Thus, by the Squeeze Theorem $\lim _{x \rightarrow 0^{+}} \frac{e^{x}-1}{x}=1$.
7. Fact: $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$.

Use the fact and limit rules to compute $\lim _{x \rightarrow 0} \frac{x^{2}+x^{3}}{(\sin x)^{2}} .(1 p t)$

$$
\begin{aligned}
\lim _{x \rightarrow 0} \frac{x^{2}+x^{3}}{(\sin x)^{2}} & =\lim _{x \rightarrow 0} \frac{(x+1) x^{2}}{(\sin x)^{2}} \\
& =\lim _{x \rightarrow 0}(x+1) \cdot\left(\lim _{x \rightarrow 0} \frac{x}{\sin x}\right)^{2} \\
& =(0+1) \cdot\left(\frac{1}{\lim _{x \rightarrow 0} \frac{\sin x}{x}}\right)^{2} \\
& =1 \cdot\left(\frac{1}{1}\right)^{2}=1
\end{aligned}
$$

(We used the Fact in the forth line.)
8. A ball is thrown vertically into the air. It is given that the height of the ball after t seconds is $20 t-5 t^{2}$ meters.
(a) When will the ball hit the ground? (The ground is height 0.) (0.5pt) Answer: We solve

$$
\begin{aligned}
& 20 t-5 t^{2}=0 \\
& t(20 t-5)=0
\end{aligned}
$$

So $t=0$ or $t=4$. The ball will hit the ground after 4 seconds.
(b) Find the average speed of the ball on the interval $1 \leq t \leq 2$. ($0.5 p t$)

$$
v_{[1,2]}=\frac{\left(20 \cdot 2-5 \cdot 2^{2}\right)-\left(20 \cdot 1-5 \cdot 1^{2}\right)}{2-1}=\frac{20-15}{1}=5
$$

(c) Compute (according to the definition) the instantaneous speed of the ball at $t=0$ and $t=1$. ($1 p t$)

$$
\begin{aligned}
v_{0} & =\lim _{h \rightarrow 0} \frac{\left(20(0+h)-5(0+h)^{2}\right)-\left(20 \cdot 0-5 \cdot 0^{2}\right)}{h}=\lim _{h \rightarrow 0} \frac{20 h-5 h^{2}}{h} \\
& =\lim _{h \rightarrow 0} 20-5 h=20 \\
v_{1} & =\lim _{h \rightarrow 0} \frac{\left(20(1+h)-5(1+h)^{2}\right)-\left(20 \cdot 1-5 \cdot 1^{2}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{\left(20+20 h-5\left(1+2 h+h^{2}\right)\right)-(15)}{h} \\
& =\lim _{h \rightarrow 0} \frac{20+20 h-5-10 h-5 h^{2}-15}{h}=\lim _{h \rightarrow 0} \frac{10 h-5 h^{2}}{h} \\
& =\lim _{h \rightarrow 0} 10-5 h=10-5 \cdot 0=10
\end{aligned}
$$

