Assignment 1
Math 104 - Section 107

Question 1 (3.5 points)

The Happy Cookie Bakery is the only producer of cookies in the city of Vancouver. Let p be the price of a
cookie (in dollars) and let ¢ be the daily demand for cookies in Genovia. The bakery’s owner estimates that the
price and demand are related by the following equation:

5000p + 2q = 20000 .

(a) If the bakery sells each cookie for 18, how many cookies will be sold per day? What will be the factory’s daily
revenue? (0.5pt)
We substitute p = 1 in 5000p + 2¢g = 20000 to get

5000 + 2¢ = 20000
2¢ = 15000
q = 7500

Thus, | 7500 | cookies will be sold.
The daily revenue will be R=p-q =1-7500 =| 75008 |.

(b) Express the price p in terms of the demand q. (0.5pt)
We solve 5000p + 2¢ = 20000 for p:

5000p + 2¢ = 20000
5000p = 20000 — 2¢q
_ 20000 — 2q _ 4_L
5000 2500

(c) Express the revenue R as a function of g. (0.5pt)

(]2

2500 [

R=pq=(4— 55) a=|4q

(d) Suppose that the daily production cost is 5000$ to keep the bakery running plus 0.2%$ for every cookie baked.
Express the bakery’s daily profit (P) as a function of g. (0.5pt)
The cost of producing ¢ cookies is C(q) = 5000 4 0.2g. Therefore, the profit is:

q
= (4q — — (5000 + 0.2
(4q 2500) ( +0.29)
q2 1 5
— 4 — — 5000 — 0.2¢ = | ———q2 + 3.8¢ — 5000 .
17 3500 q 95007 554

(e) Continuing (d), how many cookies should the bakery produce in order to maximize its profit? What should
be the price of a cookie in this case? (0.5pt)

The parabola P(q) = —ﬁqQ + 3.8¢ — 5000 attains its maximum when

3.8 2500
=— = -3.8 = 4750 .
1= 79 (C1/2500) 2

The factory should produce | 4750 | cookies in order to maximize its profit. Using part (b), the price of each

cookie should then be 4 — % = .



(f) Assume now that the cost of producing g cookies each day is C(q) = ag + b dollars (a dollars for each cookie
and b dollars to keep the bakery operating). Find a and b if the bakery’s daily profit is maximized when

g = 4000 and the maximal daily profit is 50008. (1pt)
The profit is now given by:

e
= (4q — — b
(4g = 555) — (ag +b)
2
q
17 9500 ~ M
Ly
=—— 4— —b
se00¢ T4 —a)a
The parabola —TlooqQ + (4 — a)q — b attains its maximum when ¢ = —%.
maximal when g = 4000, hence:
4—a
—————— =4000
2 (—1/2500)
1
—(4—a)=4000-2  (———
(4—a) 000 ( 2500)
a—4=-32
a=0.8
We also know that the daily profit when ¢ = 4000 is 50008, hence:
1
5000 = P(4000) = ———4000% + (4 — a)4000 — b
(4000) = — 55 +(4—a)
1
5000 = —=—— - 4000 + (4 — 0.8)4000 — b
2500 + )
5000 = —6400 + 12800 — b
b = —6400 + 12800 — 5000
b = 1400
Question 2 (6.5 points) Compute the following limits:
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3. lim Z%8 (Hint: o® + 1% = (a + b)(a2 — ab + 42)) (0.5pt)
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It is given the profit is
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4. lim Y= o== + =2 (0.5pt)
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6. Fact: 1+ zx<e*<l4+zxz+z2forall0<z<1.

Use the fact and the squeeze theorem to prove that lim 61;1 =1. (Ipt)
z—0t1
Proof: By the fact, for all 0 < x < 1, we have

1+z<e® <1+z+2? [ subtract 1]
r<e®—1<z+a? [ divide by z (0 < z) ]
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We have
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Thus, by the Squeeze Theorem lim % =1.

z—0t

. Fact: lims32z — 1,
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Use the fact and limit rules to compute lim ﬁ (1pt)
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(We used the Fact in the forth line.)



8. A ball is thrown vertically into the air. It is given that the height of the ball after ¢ seconds is 20t — 5t meters.
(a) When will the ball hit the ground? (The ground is height 0.) (0.5pt) Answer: We solve

20t — 5t2 =0
t(20t —5) =0

So ¢t =0 or ¢t = 4. The ball will hit the ground after |4 seconds .

(b) Find the average speed of the ball on the interval 1 < ¢ < 2. (0.5pt)

(2002—5-2%)—(20-1—-5-1%)  20—15

5
2-1 1

V2] =

(¢) Compute (according to the definition) the instantaneous speed of the ball at t = 0 and ¢t = 1. (Ipt)

_ 2\ _ N _F.N2 _ 2
h—0 h h—0 h
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