Question 1 (3.5 points)

The Happy Cookie Bakery is the only producer of cookies in the city of Vancouver. Let p be the price of a cookie (in dollars) and let q be the daily demand for cookies in Genovia. The bakery’s owner estimates that the price and demand are related by the following equation:

$$5000p + 2q = 20000.$$

(a) If the bakery sells each cookie for 1$, how many cookies will be sold per day? What will be the factory’s daily revenue? (0.5pt)

We substitute $p = 1$ in $5000p + 2q = 20000$ to get

$$5000 + 2q = 20000$$

$$2q = 15000$$

$$q = 7500$$

Thus, 7500 cookies will be sold.

The daily revenue will be $R = pq = 1 \cdot 7500 = 7500$.

(b) Express the price p in terms of the demand q. (0.5pt)

We solve $5000p + 2q = 20000$ for p:

$$5000p = 20000 - 2q$$

$$p = \frac{20000 - 2q}{5000} = 4 - \frac{q}{2500}.$$

(c) Express the revenue R as a function of q. (0.5pt)

$$R = pq = (4 - \frac{q}{2500}) \cdot q = 4q - \frac{q^2}{2500}.$$

(d) Suppose that the daily production cost is 5000$ to keep the bakery running plus 0.2$ for every cookie baked. Express the bakery’s daily profit (P) as a function of q. (0.5pt)

The cost of producing q cookies is $C(q) = 5000 + 0.2q$. Therefore, the profit is:

$$P(q) = R(q) - C(q)$$

$$= (4q - \frac{q^2}{2500}) - (5000 + 0.2q)$$

$$= 4q - \frac{q^2}{2500} - 5000 - 0.2q = -\frac{1}{2500}q^2 + 3.8q - 5000.$$

(e) Continuing (d), how many cookies should the bakery produce in order to maximize its profit? What should be the price of a cookie in this case? (0.5pt)

The parabola $P(q) = -\frac{1}{2500}q^2 + 3.8q - 5000$ attains its maximum when

$$q = -\frac{3.8}{2 \cdot (-1/2500)} = \frac{2500}{2} \cdot 3.8 = 4750.$$

The factory should produce 4750 cookies in order to maximize its profit. Using part (b), the price of each cookie should then be $4 - \frac{4750}{2500} = 2.18$.
(f) Assume now that the cost of producing \(q \) cookies each day is \(C(q) = aq + b \) dollars (\(a \) dollars for each cookie and \(b \) dollars to keep the bakery operating). Find \(a \) and \(b \) if the bakery’s daily profit is maximized when \(q = 4000 \) and the maximal daily profit is 5000$. (1pt)

The profit is now given by:

\[
P(q) = R(q) - C(q)
\]

\[
= (4q - \frac{q^2}{2500}) - (aq + b)
\]

\[
= 4q - \frac{q^2}{2500} - aq - b
\]

\[
= -\frac{1}{2500}q^2 + (4 - a)q - b
\]

The parabola \(-\frac{1}{2500}q^2 + (4 - a)q - b\) attains its maximum when \(q = -\frac{4-a}{2 \cdot (-1/2500)} \). It is given the profit is maximal when \(q = 4000 \), hence:

\[
-\frac{4-a}{2 \cdot (-1/2500)} = 4000
\]

\[
-(4-a) = 4000 \cdot 2 \cdot (-\frac{1}{2500})
\]

\[
a - 4 = -3.2
\]

\[
a = 0.8
\]

We also know that the daily profit when \(q = 4000 \) is 5000$, hence:

\[
5000 = P(4000) = -\frac{1}{2500}4000^2 + (4 - a)4000 - b
\]

\[
5000 = -\frac{1}{2500} \cdot 4000^2 + (4 - 0.8)4000 - b
\]

\[
5000 = -6400 + 12800 - b
\]

\[
b = -6400 + 12800 - 5000
\]

\[
b = 1400
\]

Question 2 (6.5 points) Compute the following limits:

1. \(\lim_{x \to -2} \frac{x^2 + 4x + 4}{x^2 + 3x + 2} \) (0.5pt)

\[
\lim_{x \to -2} \frac{x^2 + 4x + 4}{x^2 + 3x + 2} = \lim_{x \to -2} \frac{(x + 2)^2}{(x + 2)(x + 1)} = \lim_{x \to -2} \frac{(x + 2)}{(x + 1)} = \frac{(-2) + 2}{(-2) + 1} = \frac{0}{-1} = 0
\]

2. \(\lim_{x \to -2} \frac{x^2 + 2x + 2}{x^2 + x + 2} \) (0.5pt)

\[
\lim_{x \to -2} \frac{x^2 + 2x + 2}{x^2 + x + 2} = \frac{(-2)^2 + 2(-2) + 2}{(-2)^2 + (-2) + 2} = \frac{2}{4} = \frac{1}{2}
\]

3. \(\lim_{x \to -2} \frac{x^3 + 8}{x^2 - 4} \) (Hint: \(a^3 + b^3 = (a + b)(a^2 - ab + b^2) \)) (0.5pt)

\[
\lim_{x \to -2} \frac{x^3 + 8}{x^2 - 4} = \lim_{x \to -2} \frac{(x + 2)(x^2 - 2x + 4)}{(x + 2)(x - 2)} = \lim_{x \to -2} \frac{x^2 - 2x + 4}{x - 2} = \frac{(-2)^2 - 2(-2) + 4}{(-2) - 2} = \frac{12}{-4} = -3
\]
4. \(\lim_{x \to 1} \frac{\sqrt{x^2 + 3} - 2}{x - 1}\)

\[
\lim_{x \to 1} \frac{\sqrt{x^2 + 3} - 2}{x - 1} = \lim_{x \to 1} \frac{\sqrt{x^2 + 3} - 2}{x - 1}(\sqrt{x^2 + 3} + 2) = \lim_{x \to 1} \frac{(x^2 + 3) - 2^2}{(x - 1)(\sqrt{x^2 + 3} + 2)} \\
= \lim_{x \to 1} \frac{x^2 - 1}{(x - 1)(\sqrt{x^2 + 3} + 2)} = \lim_{x \to 1} \frac{(x - 1)(x + 1)}{(x - 1)(\sqrt{x^2 + 3} + 2)} \\
= \lim_{x \to 1} \frac{x + 1}{\sqrt{x^2 + 3} + 2} = \frac{1 + 1}{\sqrt{1^2 + 3} + 2} = \frac{2}{4} = \frac{1}{2}
\]

5. \(\lim_{x \to 0} \frac{x(x+2)}{\sqrt{x^2 + x + 1} - \sqrt{x^2 + 1}}\)

\[
\lim_{x \to 0} \frac{x(x+2)}{\sqrt{x^2 + x + 1} - \sqrt{x^2 + 1}} = \lim_{x \to 0} \frac{x(x+2)(\sqrt{x^2 + x + 1} + \sqrt{x^2 + 1})}{(\sqrt{x^2 + x + 1} - \sqrt{x^2 + 1})(\sqrt{x^2 + x + 1} + \sqrt{x^2 + 1})} \\
= \lim_{x \to 0} \frac{x(x+2)(\sqrt{x^2 + x + 1} + \sqrt{x^2 + 1})}{(x^2 + x + 1) - (x^2 + 1)} \\
= \lim_{x \to 0} \frac{x(x+2)(\sqrt{x^2 + x + 1} + \sqrt{x^2 + 1})}{x} \\
= \lim_{x \to 0} \frac{x + 2}{\sqrt{x^2 + x + 1} + \sqrt{x^2 + 1}} \\
= (0 + 2)(\sqrt{0^2 + 0 + 1} + \sqrt{0^2 + 1}) = 4
\]

6. **Fact:** \(1 + x \leq e^x \leq 1 + x + x^2\) for all \(0 \leq x \leq 1\).

Use the fact and the squeeze theorem to prove that \(\lim_{x \to 0^+} \frac{e^x - 1}{x} = 1\).

Proof: By the fact, for all \(0 < x \leq 1\), we have

\[
1 + x \leq e^x \leq 1 + x + x^2 \\
x \leq e^x - 1 \leq x + x^2 \\
\frac{x}{x} \leq \frac{e^x - 1}{x} \leq \frac{x + x^2}{x} \\
1 \leq \frac{e^x - 1}{x} \leq 1 + x
\]

We have

\[
\lim_{x \to 0^+} 1 = 1 \\
\lim_{x \to 0^+} 1 + x = 1 + 0 = 1
\]

Thus, by the Squeeze Theorem \(\lim_{x \to 0^+} \frac{e^x - 1}{x} = 1\).

7. **Fact:** \(\lim_{x \to 0^+} \frac{\sin x}{x} = 1\).

Use the fact and limit rules to compute \(\lim_{x \to 0} \frac{x^2 + x^3}{(\sin x)^2}\).

\[
\lim_{x \to 0} \frac{x^2 + x^3}{(\sin x)^2} = \lim_{x \to 0} \frac{(x + 1)x^2}{(\sin x)^2} \\
= \lim_{x \to 0} (x + 1) \cdot \left(\lim_{x \to 0} \frac{x}{\sin x}\right)^2 \\
= (0 + 1) \cdot \left(\lim_{x \to 0} \frac{1}{\sin x}\right)^2 \\
= 1 \cdot \left(\frac{1}{1}\right)^2 = 1
\]

(We used the Fact in the forth line.)
8. A ball is thrown vertically into the air. It is given that the height of the ball after t seconds is $20t - 5t^2$ meters.

(a) When will the ball hit the ground? (The ground is height 0.) (0.5pt) **Answer:** We solve

\begin{align*}
20t - 5t^2 &= 0 \\
t(20 - 5) &= 0
\end{align*}

So $t = 0$ or $t = 4$. The ball will hit the ground after **4 seconds**.

(b) Find the average speed of the ball on the interval $1 \leq t \leq 2$. (0.5pt)

$v_{[1,2]} = \frac{(20 \cdot 2 - 5 \cdot 2^2) - (20 \cdot 1 - 5 \cdot 1^2)}{2 - 1} = \frac{20 - 15}{1} = 5$

(c) Compute (according to the definition) the instantaneous speed of the ball at $t = 0$ and $t = 1$. (1pt)

\[
v_0 = \lim_{h \to 0} \frac{(20(0+h) - 5(0+h)^2) - (20 \cdot 0 - 5 \cdot 0^2)}{h} = \lim_{h \to 0} \frac{20h - 5h^2}{h} = \lim_{h \to 0} (20 - 5h) = 20
\]

\[
v_1 = \lim_{h \to 0} \frac{(20(1+h) - 5(1+h)^2) - (20 \cdot 1 - 5 \cdot 1^2)}{h} = \lim_{h \to 0} \frac{(20 + 20h - 5(1 + 2h + h^2)) - (15)}{h} = \lim_{h \to 0} \frac{20 + 20h - 5 - 10h - 5h^2 - 15}{h} = \lim_{h \to 0} \frac{10h - 5h^2}{h} = \lim_{h \to 0} (10 - 5h) = 10 - 5 \cdot 0 = 10
\]