Assignment 1

Math 104 - Section 107

Question 1 (3 points)

The Happy Cookie Bakery is the only producer of cookies in the city of Vancouver. Let p be the price of a cookie (in dollars) and let q be the daily demand for cookies in Genovia. The bakery's owner estimates that the price and demand are related by the following equation:

$$
5000 p+2 q=20000
$$

(a) If the bakery sells each cookie for $1 \$$, how many cookies will be sold per day? What will be the factory's daily revenue?
(b) Express the price p in terms of the demand q.
(c) Express the revenue R as a function of q.
(d) Suppose that the daily production cost is $5000 \$$ to keep the bakery running plus $0.2 \$$ for every cookie baked. Express the bakery's daily profit (P) as a function of q.
(e) Continuing (d), how many cookies should the bakery produce in order to maximize its profit? What should be the price of a cookie in this case?
(f) Assume now that the cost of producing q cookies each day is $C(q)=a q+b$ dollars (a dollars for each cookie and b dollars to keep the bakery operating). Find a and b if the bakery's daily profit is maximized when $q=4000$ and the maximal daily profit is $5000 \$$.

Question 2 (7 points) Compute the following limits:

1. $\lim _{x \rightarrow-2} \frac{x^{2}+4 x+4}{x^{2}+3 x+2}$
2. $\lim _{x \rightarrow-2} \frac{x^{2}+2 x+2}{x^{2}+x+2}$
3. $\lim _{x \rightarrow-2} \frac{x^{3}+8}{x^{2}-4}\left(\right.$ Hint: $\left.a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)\right)$
4. $\lim _{x \rightarrow 1} \frac{\sqrt{x^{2}+3}-2}{x-1}$
5. $\lim _{x \rightarrow 0} \frac{x(x+2)}{\sqrt{x^{2}+x+1}-\sqrt{x^{2}+1}}$.
6. Fact: $1+x \leq e^{x} \leq 1+x+x^{2}$ for all $0 \leq x \leq 1$.

Use the fact and the squeeze theorem to prove that $\lim _{x \rightarrow 0^{+}} \frac{e^{x}-1}{x}=1$.
7. Fact: $\lim _{x \rightarrow 0} \frac{\sin x}{x}=1$.

Use the fact and limit rules to compute $\lim _{x \rightarrow 0} \frac{x^{2}+x^{3}}{(\sin x)^{2}}$.
8. A ball is thrown vertically into the air. It is given that the height of the ball after t seconds is $20 t-5 t^{2}$ meters.
(a) When will the ball hit the ground? (The ground is height 0 .)
(b) Find the average speed of the ball on the interval $1 \leq t \leq 2$.
(c) Compute (according to the definition) the instantaneous speed of the ball at $t=0$ and $t=1$.

