Question 1 (2 points) Peter Pan sells flying powder. Denote by q the amount of power produced (in grams) and p the price (in dollars) of one gram of power. It is given that:
(i) p and q are related via $p^{2}+q^{2}=5000$.
(ii) The cost of producing q grams of powder is $C(q)=1000+10 q$.

Answer the following:

1. Find the revenue (R) and profit (P). Express them as functions of q.

From (i) we get $p^{2}=5000-q^{2}$, so $p=\sqrt{5000-q^{2}}$. Thus,

$$
\begin{aligned}
& R(q)=p q=q \sqrt{5000-q^{2}} \\
& P(q)=R(q)-C(q)=q \sqrt{5000-q^{2}}-10 q-1000
\end{aligned}
$$

2. Find the marginal cost and marginal revenue. Express them as functions of q.

$$
\begin{aligned}
C^{\prime}(q) & =(1000+10 q)^{\prime}=10 \\
R^{\prime}(q) & =\sqrt{5000-q^{2}}+q \cdot \frac{1}{2 \sqrt{5000-q^{2}}} \cdot(-2 q) \\
& =\sqrt{5000-q^{2}}-\frac{q^{2}}{\sqrt{5000-q^{2}}}
\end{aligned}
$$

3. Suppose $q=50$. What is the marginal revenue and marginal cost? Does increasing q increases the profit?

$$
\begin{aligned}
& C^{\prime}(50)=10 \\
& R^{\prime}(50)=\sqrt{5000-50^{2}}-\frac{50^{2}}{\sqrt{5000-50^{2}}}=50-\frac{50^{2}}{50}=0
\end{aligned}
$$

We get that $P^{\prime}(50)=R^{\prime}(50)-C^{\prime}(50)=0-10=-10$. Thus, increasing q decreases the profit.
4. For what q is the profit maximal?

There was a mistake in this excercise so it will not be graded.
Question 2 (2 points) Differentiate the following functions:

1. $2^{x}+\log _{3} x-2 x^{\pi}$

$$
\frac{d}{d x}\left(2^{x}+\log _{3} x-2 x^{\pi}\right)=2^{x} \ln 2+\frac{1}{x \ln 3}-2 \pi x^{\pi-1}
$$

2. $\left(5^{x}-x\right)^{1.4}$

$$
\frac{d}{d x}\left(5^{x}-x\right)^{1.4}=1.4\left(5^{x}-x\right)^{0.4} \cdot\left(5^{x}-x\right)^{\prime}=1.4\left(5^{x}-x\right)^{0.4}\left(5^{x} \ln 5-1\right)
$$

3. $x^{\left(e^{x}\right)}$

$$
\begin{aligned}
\frac{d}{d x}\left(x^{\left(e^{x}\right)}\right) & =\frac{d}{d x}\left(e^{e^{x} \ln x}\right)=e^{e^{x} \ln x} \cdot\left(e^{x} \ln x\right)^{\prime} \\
& =x^{\left(e^{x}\right)}\left(e^{x} \ln x+\frac{e^{x}}{x}\right)
\end{aligned}
$$

4. $(\ln x)^{\ln x}$

$$
\begin{aligned}
\frac{d}{d x}(\ln x)^{\ln x} & =\frac{d}{d x}\left(e^{\ln x \cdot \ln \ln x}\right)=e^{\ln x \cdot \ln \ln x} \cdot(\ln x \cdot \ln \ln x)^{\prime} \\
& =(\ln x)^{\ln x}\left(\frac{\ln \ln x}{x}+\ln x \cdot(\ln \ln x)^{\prime}\right) \\
& =(\ln x)^{\ln x}\left(\frac{\ln \ln x}{x}+\ln x \cdot \frac{1}{\ln x} \cdot \frac{1}{x}\right) \\
& =(\ln x)^{\ln x}\left(\frac{\ln \ln x}{x}+\frac{1}{x}\right)=\frac{(\ln x)^{\ln x}(\ln \ln x+1)}{x}
\end{aligned}
$$

Question 3 (2 points) Use implicit differentiation to express $\frac{d y}{d x}$ as a function of x and y in the following cases:

1. $x^{3}+x y+y^{3}=1$

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{3}+x y+y^{3}\right)=\frac{d}{d x} 1 \\
& 3 x^{2}+y+x y^{\prime}+3 y^{2} y^{\prime}=0 \\
& y^{\prime}\left(x+3 y^{2}\right)=-3 x^{2}-y \\
& \frac{d y}{d x}=-\frac{3 x^{2}+y}{x+3 y^{2}}
\end{aligned}
$$

2. $e^{x}+e^{y}=x y+1$

$$
\begin{aligned}
& \frac{d}{d x}\left(e^{x}+e^{y}\right)=\frac{d}{d x}(x y+1) \\
& e^{x}+e^{y} y^{\prime}=y+x y^{\prime} \\
& y^{\prime}\left(e^{y}-x\right)=y-e^{x} \\
& \frac{d y}{d x}=\frac{y-e^{x}}{e^{y}-x}
\end{aligned}
$$

Question 4 (2 points) Find the tangent line to the curve $x+\cos x=y^{5}+y^{4}-1$ at the point $(0,1)$.
Solution: We find $\frac{d y}{d x}$ using implicit differentiation:

$$
\begin{aligned}
& \frac{d}{d x}(x+\cos x)=\frac{d}{d x}\left(y^{5}+y^{4}-1\right) \\
& 1-\sin x=5 y^{4} y^{\prime}+4 y^{3} y^{\prime} \\
& y^{\prime}\left(5 y^{4}+4 y^{3}\right)=1-\sin x \\
& \frac{d y}{d x}=\frac{1-\sin x}{5 y^{4}+4 y^{3}}
\end{aligned}
$$

The slope of the tangent line at $(0,1)$ is

$$
m=\left.\frac{d y}{d x}\right|_{x=0, y=1}=\frac{1-\sin 0}{5 \cdot 1^{4}+4 \cdot 1^{3}}=\frac{1}{9} .
$$

Thus, the tangent line is

$$
\begin{aligned}
& y-1=m(x-0) \\
& y=\frac{1}{9} x+1
\end{aligned}
$$

Question 5 (2 points) Find all values of a for which the tangent line to the curve $x^{2}-a x y+y^{2}=1$ at the point $(1,0)$ passes through the point $(2,5)$.
Solution: We find $\frac{d y}{d x}$ using implicit differentiation:

$$
\begin{aligned}
& \frac{d}{d x}\left(x^{2}-a x y+y^{2}\right)=\frac{d}{d x}(1) \\
& 2 x-\left(a y+a x y^{\prime}\right)+2 y y^{\prime}=0 \\
& y^{\prime}(2 y-a x)=a y-2 x \\
& \frac{d y}{d x}=\frac{a y-2 x}{2 y-a x}
\end{aligned}
$$

The slope of the tangent line at $(1,0)$ is

$$
m=\left.\frac{d y}{d x}\right|_{x=1, y=0}=\frac{a \cdot 0-2 \cdot 1}{2 \cdot 0-a \cdot 1}=\frac{2}{a}
$$

The tangent line at $(1,0)$ is

$$
\begin{aligned}
& \quad y-0=m(x-1) \\
& y=\frac{2}{a}(x-1)
\end{aligned}
$$

The tangent line passes through $(2,5)$ precisely when

$$
\begin{aligned}
& 5=\frac{2}{a}(2-1) \\
& 5 a=2 \\
& a=\frac{2}{5}=0.4
\end{aligned}
$$

