Question 1 (2 points) Peter Pan sells flying powder. Denote by \(q \) the amount of power produced (in grams) and \(p \) the price (in dollars) of one gram of power. It is given that:

(i) \(p \) and \(q \) are related via \(p^2 + q^2 = 5000 \).

(ii) The cost of producing \(q \) grams of powder is \(C(q) = 1000 + 10q \).

Answer the following:

1. Find the revenue \((R) \) and profit \((P) \). Express them as functions of \(q \).
2. Find the marginal cost and marginal revenue. Express them as functions of \(q \).
3. Suppose \(q = 50 \). What is the marginal revenue and marginal cost? Does increasing \(q \) increases the profit?
4. For what \(q \) is the profit maximal?

Question 2 (2 points) Differentiate the following functions:

1. \(2^x + \log_3 x - 2x^\pi \)
2. \((5^x - x)^{1.4} \)
3. \(x(e^x) \)
4. \((\ln x)^{\ln x} \)

Question 3 (2 points) Use implicit differentiation to express \(\frac{dy}{dx} \) as a function of \(x \) and \(y \) in the following cases:

1. \(x^3 + xy + y^3 = 1 \)
2. \(e^x + e^y = xy + 1 \)

Question 4 (2 points) Find the tangent line to the curve \(x + \cos x = y^5 + y^4 - 1 \) at the point \((0, 1)\).

Question 5 (2 points) Find all values of \(a \) for which the tangent line to the curve \(x^2 - axy + y^2 = 1 \) at the point \((1, 0)\) passes through the point \((2, 5)\).