\qquad
[15] 1. Short Answer Questions. Each question is worth 3 points. Put your final answer in the box provided, but NO CREDIT will be given for the answer without the correct accompanying work.
(a) Let $f(x)=x^{3}-4 x+1$ and let $g(0)=2$ and let $g^{\prime}(0)=5$. Use the quotient rule to find $\left(\frac{f}{g}\right)^{\prime}(0)$.

$$
f(0)=1
$$

$$
f^{\prime}(x)=3 x^{2}-4 \quad \Rightarrow \quad f^{\prime}(0)=-4
$$

$$
\begin{aligned}
\left(\frac{f}{g}\right)^{\prime}(0) & =\frac{f^{\prime}(0) g(0)-f(0) g^{\prime}(0)}{g^{2}(0)}=1 p t \\
& =\frac{-4-2-5}{4}=-\frac{13}{4} \quad 1 p t
\end{aligned}
$$

Answer:

$$
-\frac{13}{4}
$$

(b) Evaluate the following limit, be sure to justify your answer.

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{9 x^{2}-x+1}}{4 x-5}
$$

$$
=\lim _{x \rightarrow \infty} \frac{\sqrt{(3 x)^{2}-x+1}}{4 x-5}
$$

Answer:

$=\lim _{x \rightarrow \infty} \frac{\sqrt{(3 x)^{2}\left(1-\frac{1}{3 x}+\frac{1}{3 x^{2}}\right)}}{4 x\left(1-\frac{5}{4 x}\right)}$ Apt

$$
=\lim _{x \rightarrow \infty} \frac{3 x \sqrt{1-\frac{1}{3 x}+\frac{1}{3 x^{2}}}}{4 x\left(1-\frac{5}{4 x}\right)}=\frac{3}{4} \text { pt }
$$

\qquad
(c) For what value of c is the following function continuous?

$$
f(x)=\left\{\begin{array}{r}
x^{2}-3 x, x \leq 0 \\
\ln (x-c), x>0
\end{array}\right.
$$

Need:

$$
0=\lim _{x \rightarrow 0^{+}} \ln (x-c)=\ln (-c)
$$

$$
c=-1
$$

Apply e^{x} on both sidles: Apt

$$
e^{0}=-c \quad \Rightarrow c=-1 \quad 1 p t
$$

Answer:
(d) Suppose f is continuous and increasing on $[0,1]$. Is it true that there exists $0<c<1$ such that $f(c)=\frac{f(0)+f(1)}{2}$? Justify your answer for credit.
f is increasing on $[0,1]$
Answer:

$$
\Rightarrow \quad f(0)<\frac{f(0)+f(1)}{2}<f(1)
$$

True
$\Rightarrow B_{y}$ the IVT there exists $0<c<1$
sues that $f(c)=\frac{f(0)+f(1)}{2}$
(e) Suppose that $f \cdot g$ is differentiable at 0 , and g is not differentiable at 0 . Is it true that f is differentiable at 0 ? Justify your answer for credit.
Let $f(x)=g(x)=|x|$
Answer:
Then $f \cdot g=x^{2}$ is differentiable
False
at O, but $\&$ and g are not.
\qquad
[10] 2. Definition of the Derivative.
(a) [3] Carefully state the definition of the derivative of a function $f(x)$ at a point $x=a$.

$$
f^{\prime}(a)=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{t-a}
$$

or $f^{\prime}(a)=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}$
(b) [7] Using left and right handed limits, show that the function $f(x)=|2 x-6|$ is not differntiable at $x=3$.

$$
\begin{aligned}
& \lim _{x \rightarrow 3^{+}} \frac{|2 x-6|-|0|}{x-3}=\lim _{x \rightarrow 3^{+}} \frac{2 x-6-0}{x-3}=\lim _{x \rightarrow 3+} \frac{2 f(x-3)}{x-3}=2 \\
& \lim _{x \rightarrow 3^{-}} \frac{|2 x-6|-|0|}{x-3}=\lim _{x \rightarrow 3^{-}} \frac{-2 x+6-0}{x-3}=\lim _{x \rightarrow 3^{-}} \frac{-2(x-3)}{x-3}=-2
\end{aligned}
$$

\Rightarrow The limit $\lim _{x \rightarrow 3} \frac{|2 x-6|-|0|}{x-3}$ does vol exist
$\Rightarrow f(x)=|2 x-6|$ is not differentiable at $x=3$ 1pt
[10] 3. When DM sells light aircraft on the open market, they find that when the price is $\$ 4000$ per glider they sell 6 gliders per month. For every $\$ 100$ in price, the number of gliders they sell decreases by 1 . The companies production costs are $\$ 4300$ dollars per aircraft, but DM receives a subsidy from the Province of B.C. for $\$ 7000$ month.
(a) [2] Find the linear demand equation. Use p for the unit price and q for the monthly demand.

$$
\begin{aligned}
q & =a p+b \\
q & =-\frac{1}{100} p+b \\
b & =-\frac{1}{100} 4000+b \Rightarrow b=6+\frac{4000}{100}=46 \\
\Rightarrow q & =-\frac{1}{100} p+46 \\
100 q & =-p+4600 \\
\Rightarrow p & =-100 q+4600
\end{aligned}
$$

(b) [1] Find the monthly cost function $C(q)$ as a function of q.

$$
c(q)=-7000+4300 q
$$

(c) [1] Find the monthly revenue function $R(q)$ as a function of q.

$$
\begin{aligned}
R(q)=p \cdot q & =(-100 q+4600) q \\
& =-100 q^{2}+4600 q
\end{aligned}
$$

\qquad
(d) [3] Find the breakeven points. Give both price p and quantity q at each of these points. (You will need the fact that $17^{2}=289$.)
Breakeven points: $C(q)=R(q)$

$$
\begin{aligned}
& -7000+4300 q=-100 q^{2}+4600 q \\
& 100 q^{2}-300 q-7000=0 \\
& q^{2}-3 q-70=0 \quad 1 p t \\
& q_{1,2}=\frac{3 \pm \sqrt{9+280}}{2}=\frac{3 \pm \sqrt{289}}{2}=\frac{3 \pm 17}{2}<p=3600 \\
& -70^{1 p t} \rightarrow p=5300
\end{aligned}
$$

(e) [2] Find the derivative of the profit function $P^{\prime}(q)$. This is often called the Marginal Profit.

$$
\begin{aligned}
& P(q)=R(q)-C(q)=-100 q^{2}+4600 q-4300 q+7000 \\
&=-100 q^{2}+300 q+7000 \\
& P^{\prime}(q)=-200 q+300
\end{aligned}
$$

(f) [1] Find the quantity q for which the Marginal Profit is 0 .

$$
\begin{aligned}
0 & =-200 q+300 \\
200 q & =300 \\
q & =\frac{300}{200}=\frac{3}{2}
\end{aligned}
$$

\qquad
[15] 4. Let $f(x)=\frac{1}{x}$ and c be the x-coordinate of the intersection of the tangent lines going through $P=(a, f(a))$ and $Q=(b, f(b))$ as shown in the diagram.

(a) [5] What is the equation of the tangent line to $y=f(x)$ at the point P ?

$$
\begin{aligned}
& \quad l_{p}(x)=f^{\prime}(a)(x-a)+f(a) \quad \text { 2pt } \quad f^{\prime}(x)=-\frac{1}{x^{2}} \\
\Rightarrow & \quad \operatorname{lp}(x)=-\frac{1}{a^{2}}(x-a)+\frac{1}{a} \quad \text { pt }
\end{aligned}
$$

(b) [5] When $a=2$ and $b=3$, calculate c.
$\begin{array}{ll}\text { (1) } & \ell_{p}(x)=-\frac{1}{2^{2}}(x-2)+\frac{1}{2} \\ \text { (2) } & l_{Q}(x)=-\frac{1}{3^{2}}(x-3)+\frac{1}{3}\end{array}$

$$
\begin{aligned}
& -\frac{1}{4} x+\frac{1}{2}+\frac{1}{2} \stackrel{!}{=}-\frac{1}{9} x+\frac{1}{3}+\frac{1}{3} \\
& -x+4=-\frac{4}{9} x+\frac{8}{3} \\
& -9 x+36=-4 x+24 \Rightarrow-5 x=-\frac{12}{2} \\
& c=x=\frac{12}{5} 2 p t
\end{aligned}
$$

(c) [5] Show that for any choice of a and b, c is always given by the formula $c=\frac{2 a b}{a+b}$ (c is the harmonic mean of a and b).

$$
\begin{aligned}
& -\frac{1}{a^{2}}(x-a)+\frac{1}{a}=-\frac{1}{b^{2}}(x-b)+\frac{1}{b} \\
& -b^{2}(x-a)+a b^{2}=-a^{2}(x-b)+a^{2} b \\
& -b^{2} x+b^{2} a+a b^{2}=-a^{2} x+a^{2} b+a^{2} b \\
& \\
& \times\left(a^{2}-b^{2}\right)=2 a b-(a-b) \\
& \quad x=\frac{2 a b-(a-b)}{a^{2}-b^{2}}=\frac{2 a b-(a-b)}{a+b)(a-b)} \\
& \Rightarrow c=x=\frac{2 a b}{a+b}
\end{aligned}
$$

