Name: \qquad
Student Nr.: \qquad
Question 1 (3 points)
Find the right Riemann sum approximating the area under the curve $f(x)=x^{2}$ over the interval $[1,11]$ using 10 subintervals. (Your answer may be left as a short sum of fractions, but no sigmas.)

$$
\text { Note: } \quad \sum_{i=1}^{n} i=\frac{n(n+1)}{2}, \quad \sum_{i=1}^{n} i^{2}=\frac{n(n+1)(2 n+1)}{6} .
$$

Solution:

The length of the subintervals is $\Delta x=\frac{b-a}{n}=\frac{11-1}{10}=1$ (pt).
Then, the right Riemann sum is

$$
\begin{aligned}
\sum_{i=1}^{10} f(a+i \Delta x) \Delta x & =\sum_{i=1}^{10} f(1+i)=\sum_{i=1}^{10}(1+i)^{2}=\sum_{i=1}^{10} 1+2 i+i^{2} \quad(1 p t) \\
& =\left(\sum_{i=1}^{10} 1\right)+2\left(\sum_{i=1}^{10} i\right)+\left(\sum_{i=1}^{10} i^{2}\right)=10+2 \frac{10 \cdot 11}{2}+\frac{10 \cdot 11 \cdot 21}{6} \quad(1 p t)
\end{aligned}
$$

Remark: There was an error in the formula for $\sum_{i=1}^{n} i$ in the original quiz. We accepted both versions.

Question 2 (2 points)
Compute $\frac{d}{d x} \int_{0}^{e^{x}} \cos (t) d t$.

Solution:

If our area function is $A(x)=\int_{0}^{x} \cos (t) d t$, then this question is asking us to compute $\frac{d}{d x} A\left(e^{x}\right)$.
By the chain rule, this is equal

$$
\begin{aligned}
\frac{d}{d x} A\left(e^{x}\right) & =A^{\prime}\left(e^{x}\right) \frac{d}{d x}\left(e^{x}\right) \\
& =A^{\prime}\left(e^{x}\right) e^{x}
\end{aligned}
$$

By the Fundamental Theorem of Calculus, part $1, A^{\prime}(x)=\cos (x)$, and so $A^{\prime}\left(e^{x}\right)=\cos \left(e^{x}\right)$. Plugging this all into the above equation gives

$$
\begin{equation*}
\frac{d}{d x} A\left(e^{x}\right)=\cos \left(e^{x}\right) e^{x} \tag{1pt}
\end{equation*}
$$

Question 3 (2 points)
Evaluate $\int_{0}^{1} \frac{y^{2}}{(y+1)^{4}} d y$

Solution:

We will use substitution. Let $u=y+1$, so $y=u+1$ and $d y=d u$. The lower limit of the integration is then $u_{0}=0+1=1$ and the upper limit of the integration is $u_{1}=1+1=2(1 \mathrm{pt})$. Then our integral becomes

$$
\begin{aligned}
\int_{0}^{1} \frac{y^{2}}{(y+1)^{4}} d y & =\int_{1}^{2} \frac{(u-1)^{2}}{u^{4}} d u \\
& =\int_{1}^{2} \frac{u^{2}-2 u+1}{u^{4}} d u \\
& =\int_{1}^{2} u^{-2}-2 u^{-3}+u^{-4} d u \\
& =-u^{-1}+u^{-2}-\left.\frac{1}{3} u^{-3}\right|_{1} ^{2} \\
& =-2^{-1}+2^{-2}-\frac{1}{3} 2^{-3}-\left(1^{-1}+1^{-2}-\frac{1}{3} 1^{-3}\right) \\
& =\frac{1}{24} \quad(1 p t)
\end{aligned}
$$

Question 4 (3 points)

Evaluate $\int_{1}^{2} x^{3} \ln x d x$

Solution:

We will integrate by parts. The functions $\ln x$ is difficult to integrate, so let us instead differentiate it. We choose $u=\ln x$ and $d v=x^{3}$ (1pt). This implies that $d u=\frac{1}{x}$, and $v=\frac{x^{4}}{4}$. Hence, for the indefinite integral we get that

$$
\begin{aligned}
\int x^{3} \ln x d x & =(\ln x) \frac{x^{4}}{4}-\int \frac{1}{x} \frac{x^{4}}{4} d x=(\ln x) \frac{x^{4}}{4}-\int \frac{x^{3}}{4} d x \\
& =(\ln x) \frac{x^{4}}{4}-\frac{x^{4}}{16}+C . \quad(1 p t)
\end{aligned}
$$

Applying Fundamental Theorem of Calculus, part 2 we get that

$$
\begin{equation*}
\int_{1}^{2} x^{3} \ln x d x=(\ln 2) \frac{2^{4}}{4}-\frac{2^{4}}{16}-(\ln 1) \frac{1^{4}}{4}+\frac{1^{4}}{16}=4 \ln 2-1-0+\frac{1}{16} \tag{1pt}
\end{equation*}
$$

