Name: \qquad
Student Nr.: \qquad

Question 1 (5 points)

Find the critical points of the following function and use the second derivative test to classify them as local minima, local maxima, or saddle points: $f(x, y)=x^{4}+2 y^{2}-4 x y$.

The first order partial derivatives of $f(x, y)$ are

$$
\begin{aligned}
\nabla f_{x} & =4 x^{3}-4 y \\
\nabla f_{y} & =4 y-4 x
\end{aligned}
$$

If both first order partial derivatives vanish, then $x^{3}=y$ and $y=x$. Combining the two we get that $x^{3}=x$. Then, either $x=0$ and therefore $y=0$. Or, if $x \neq 0$, we can divide both sides by x, and we get that $x^{2}=1$. This implies that $x= \pm 1$. All together this means that there are three critical points: $(-1,-1),(0,0)$ and $(1,1)(1 p t)$. The discriminant of the function is

$$
\begin{equation*}
D(x, y)=f_{x x}(x, y) f_{y y}(x, y)-f_{x y}^{2}(x, y)=\left(12 x^{2}\right)(4)-(-4)^{2}=48 x^{2}-16 \tag{1pt}
\end{equation*}
$$

We perform the second derivative test on the three critical points (2 pts).

- $D(-1,-1)=48-16=32>0$, and $f_{x x}(-1,-1)=12>0$, so $(-1,-1)$ is a local minimum.
- $D(0,0)=-16<0$, so $(0,0)$ is a saddle point.
- $D(1,1)=48-16=32>0$, and $f_{x x}(1,1)=12>0$, so $(1,1)$ is a local minimum.

Question 2 (5 points)

Find the maximum and minimum values of $f(x, y)=y^{2}-6 x^{2}$ subject to the constraint $x^{2}+2 y^{2}=2$.

We will use the method of Lagrange Multipliers. The gradients of f and g are:

$$
\begin{aligned}
\nabla f & =\langle-12 x, 2 y\rangle \\
\nabla g & =\langle 2 x, 4 y\rangle
\end{aligned}
$$

Therefore, the Lagrange Multiplier equations are (1 pt):

$$
\begin{align*}
& \text { (1) }-12 x=2 \lambda x \\
& 2 y=4 \lambda y \tag{2}\\
& \text { (3) } x^{2}+2 y^{2}-2=0
\end{align*}
$$

Suppose first that $x=0$. Then, from (3) we get that $2 y^{2}=2$, from which it follows that $y= \pm 1$. Then from (2) it follows that $\lambda= \pm \frac{1}{2}$. (1 pt)
If $x \neq 0$, then we can divide in (1) with x to get $-12=2 \lambda$. This gives $\lambda=-6$. Plugging this into (2) gives $2 y=-24 y$. This can be satisfied only if $y=0$. Then (3) simplifies to $x^{2}=2$. This gives $x= \pm \sqrt{2}$. (1 pt)
The values of f at the possible candidates are (1 pt):

$$
\begin{gathered}
f(0, \pm 1)=1 \\
f(\pm \sqrt{2}, 0)=-6 \cdot 2=-12
\end{gathered}
$$

Therefore, the minimum of f subject to the constraint is --12 , and the maximum of it is 1 (1 pt).

