Difference between revisions of "Week4a"

From UBCMATH WIKI
Jump to: navigation, search
(Created page with "== Activities == '''Activity 1.''' Below is the graph of a function f: Rocket's velocity versus time Compute the following limits. Note t...")
 
 
(2 intermediate revisions by one user not shown)
Line 1: Line 1:
== Activities ==
+
<div class="toccolours mw-collapsible mw-collapsed" style="width:1000px">
 +
===Activities===
 +
<div class="mw-collapsible-content">
  
'''Activity 1.'''  
+
'''Activity: interpreting limits from a graph.'''  
  
 
Below is the graph of a function f:
 
Below is the graph of a function f:
Line 50: Line 52:
  
 
u) $\lim_{x\rightarrow 0} f(\cos{x})$
 
u) $\lim_{x\rightarrow 0} f(\cos{x})$
 +
 +
</div>
 +
</div>
 +
 +
 +
<div class="toccolours mw-collapsible mw-collapsed" style="width:1000px">
 +
===Clicker Questions===
 +
<div class="mw-collapsible-content">
 +
 +
'''Question.'''
 +
 +
The statement, “Whether or not $\lim_{x\rightarrow a} f(x)$ exists depends on how $f(a)$ is defined,” is true 
 +
 +
a) Never.
 +
 +
b) Sometimes.
 +
 +
c) Always.
 +
 +
 +
'''Question.'''
 +
 +
If a function $f$ is not defined at $x=a$, then 
 +
 +
a) $\lim_{x\rightarrow a} f(x)$ cannot exist. 
 +
 +
b) $\lim_{x\rightarrow a} f(x)$ could be 2.
 +
 +
c) $\lim_{x\rightarrow a} f(x)$ must approach infinity.
 +
 +
d) Not enough information.
 +
 +
</div>
 +
</div>

Latest revision as of 15:46, 3 November 2014

Activities

Activity: interpreting limits from a graph.

Below is the graph of a function f:

Rocket's velocity versus time

Compute the following limits. Note that some of your answers will only be approximate.

a) $f(0)$

b) $f(1.5)$

c) $f(1)$

d) $f(0.9)$

e) $f(1.1)$

f) $\lim_{x\rightarrow 1^+} f(x)$

g) $\lim_{x\rightarrow 1^-} f(x)$

h) $\lim_{x\rightarrow 1} f(x)$

i) $f(1.9)$

j) $f(2.1)$

k) $\lim_{x\rightarrow 2} f(x)$

l) $f(f(1.9))$

m) $f(f(2.1))$

n) $\lim_{x\rightarrow 2^+} f(f(x))$

o) $\lim_{x\rightarrow 2^-} f(f(x))$

p) $\lim_{x\rightarrow 2} f(f(x))$

q) $\lim_{x\rightarrow -1} f(f(x))$

r) $\lim_{x\rightarrow 4} f(f(x))$

s) $\lim_{x\rightarrow -4} f(f(x))$

t) $\lim_{x\rightarrow 0} f(1+x^2)$

u) $\lim_{x\rightarrow 0} f(\cos{x})$


Clicker Questions

Question.

The statement, “Whether or not $\lim_{x\rightarrow a} f(x)$ exists depends on how $f(a)$ is defined,” is true

a) Never.

b) Sometimes.

c) Always.


Question.

If a function $f$ is not defined at $x=a$, then

a) $\lim_{x\rightarrow a} f(x)$ cannot exist.

b) $\lim_{x\rightarrow a} f(x)$ could be 2.

c) $\lim_{x\rightarrow a} f(x)$ must approach infinity.

d) Not enough information.