
Today

• I’m out of town Tuesday (Jan 28) 

• no office hours, no lecture, 

• read Variations of Parameters (3.6) - for interest, not on the exam.

• The geometry of homogeneous and nonhomogeneous matrix equations

• Solving nonhomogeneous equations

• Method of undetermined coefficients



Second order, linear, constant coeff, nonhomogeneous  (3.5)

• Our next goal is to figure out how to find solutions to nonhomogeneous 
equations like this one:

• But first, a bit more on the connections between matrix algebra and 
differential equations . . .

y�� − 6y� + 8y = sin(2t)
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Some connections to linear (matrix) algebra

• A homogeneous matrix equation has the form 

• A non-homogeneous matrix equation has the form 

• A homogeneous differential equation has the form 

• A non-homogeneous differential equation has the form 

Ax = b

Ax = 0

L[y] = 0

L[y] = g(t)



Solutions to homogeneous matrix equations

• The matrix equation                  could have (depending on A)

(A) no solutions.

(B) exactly one solution.

(C) a one-parameter family of solutions.

(D) an n-parameter family of solutions.

Ax = 0

Choose the answer that is incorrect.
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Solutions to homogeneous matrix equations

• The matrix equation                  could have (depending on A)

(A) no solutions.

(B) exactly one solution.

(C) a one-parameter family of solutions.

(D) an n-parameter family of solutions.

Ax = 0

Choose the answer that is incorrect.

Possibilities:

x = C1




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

 + C2
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


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Solutions to homogeneous matrix equations

• Example 1. Solve the equation                  where 

• Row reduction gives

• so                               and                               and       can be whatever 

(because it doesn’t have a leading one).
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• To solve a nonhomogeneous differential equation:

1. Find the general solution to the associated homogeneous 
problem, yh(t).

2. Find a particular solution to the nonhomogeneous problem, yp(t).

3. The general solution to the nonhomogeneous problem is their 
sum: 

Solutions to nonhomogeneous differential equations

y = yh + yp = C1y1 + C2y2 + yp

• For step 2, try “Method of undetermined coefficients”...
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(A)  

(B)  

(C) 

(D) 

(E) 

y�� − 4y = cos(2t)

yp(t) = A cos(2t)

yp(t) = A cos(2t) + B sin(2t)

yp(t) = e2t(A cos(2t) + B sin(2t))

yp(t) = A sin(2t)

yp(t) = t(A cos(2t) + B sin(2t))
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Method of undetermined coefficients (3.5)

• Summary - finding a particular solution to L[y] = g(t).

• Include all functions that are part of the g(t) family (e.g. cos and sin)

• If part of the g(t) family is a solution to the homogeneous (h-)problem, 
use t x (g(t) family).

• If t x (part of the g(t) family), is a solution to the h-problem, use t2 x (g
(t) family).

• For sums, group terms into families and include a term for each.

• For products of families, use the above rules and multiply them. 

• If your guess includes a solution to the h-problem, you may as well 
remove it as it won’t survive L[ ] so you won’t be able to determine its 
undetermined coefficient.


