Today

- I'm out of town Tuesday (Jan 28)
 - no office hours, no lecture,
 - read Variations of Parameters (3.6) for interest, not on the exam.
- The geometry of homogeneous and nonhomogeneous matrix equations
- Solving nonhomogeneous equations
 - Method of undetermined coefficients

Second order, linear, constant coeff, **non**homogeneous (3.5)

• Our next goal is to figure out how to find solutions to nonhomogeneous equations like this one:

$$y'' - 6y' + 8y = \sin(2t)$$

• But first, a bit more on the connections between matrix algebra and differential equations . . .

• A homogeneous matrix equation has the form

$$A\overline{x} = \overline{0}$$

• A homogeneous matrix equation has the form

$$A\overline{x} = \overline{0}$$

• A non-homogeneous matrix equation has the form

$$A\overline{x} = \overline{b}$$

• A homogeneous matrix equation has the form

$$A\overline{x} = \overline{0}$$

• A non-homogeneous matrix equation has the form

$$A\overline{x} = \overline{b}$$

• A homogeneous differential equation has the form

$$L[y] = 0$$

• A homogeneous matrix equation has the form

$$A\overline{x} = \overline{0}$$

• A non-homogeneous matrix equation has the form

$$A\overline{x} = \overline{b}$$

• A homogeneous differential equation has the form

$$L[y] = 0$$

• A non-homogeneous differential equation has the form

$$L[y] = g(t)$$

• The matrix equation $A\overline{x} = \overline{0}$ could have (depending on A)

(A) no solutions.

(B) exactly one solution.

(C) a one-parameter family of solutions.

(D) an n-parameter family of solutions.

• The matrix equation $A\overline{x} = \overline{0}$ could have (depending on A)

 \bigstar (A) no solutions.

(B) exactly one solution.

(C) a one-parameter family of solutions.

(D) an n-parameter family of solutions.

• The matrix equation $A\overline{x} = \overline{0}$ could have (depending on A)

 \bigstar (A) no solutions.

(B) exactly one solution.

(C) a one-parameter family of solutions.

(D) an n-parameter family of solutions.

Possibilities:

• The matrix equation $A\overline{x} = \overline{0}$ could have (depending on A)

 \bigstar (A) no solutions.

(C) a one-parameter family of solutions.

(D) an n-parameter family of solutions.

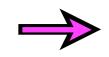
Possibilities:

 $\overline{x} = \overline{0}$

• The matrix equation $A\overline{x} = \overline{0}$ could have (depending on A)

 \bigstar (A) no solutions.

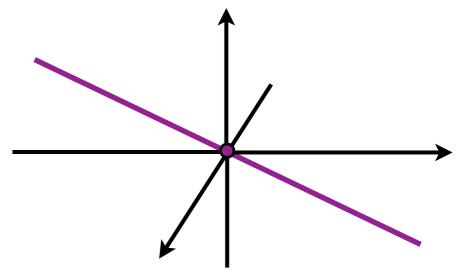
(B) exactly one solution.



(C) a one-parameter family of solutions.

(D) an n-parameter family of solutions.

Choose the answer that is incorrect.



Possibilities: $\overline{x} = C \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix}$

• The matrix equation $A\overline{x} = \overline{0}$ could have (depending on A)

 \bigstar (A) no solutions.

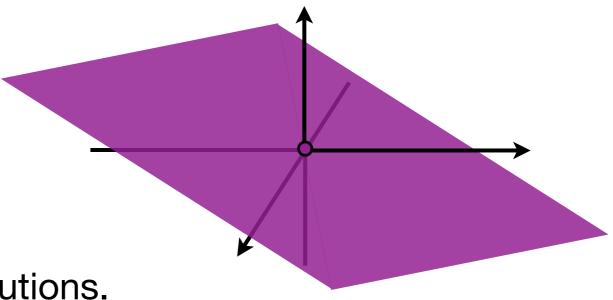
(B) exactly one solution.

(C) a one-parameter family of solutions.

 \rightarrow

(D) an n-parameter family of solutions. Possibilities. $\overline{x} = C_1 \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} + C_2 \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$

Choose the answer that is incorrect.



Possibilities:

• Example 1. Solve the equation $A\overline{x} = \overline{0}$ where

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & -2 \\ 2 & 1 & 1 \end{pmatrix}$$

• Example 1. Solve the equation $A\overline{x} = \overline{0}$ where

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & -2 \\ 2 & 1 & 1 \end{pmatrix}$$

Each equation describes a plane.

• Example 1. Solve the equation $A\overline{x} = \overline{0}$ where

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & -2 \\ 2 & 1 & 1 \end{pmatrix}$$

Each equation describes a plane.

Row reduction gives

$$A \sim \begin{pmatrix} 1 & 0 & -1/3 \\ 0 & 1 & 5/3 \\ 0 & 0 & 0 \end{pmatrix}$$

• Example 1. Solve the equation $A\overline{x} = \overline{0}$ where

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & -2 \\ 2 & 1 & 1 \end{pmatrix}$$

Each equation describes a plane.

Row reduction gives

$$A \sim \begin{pmatrix} 1 & 0 & -1/3 \\ 0 & 1 & 5/3 \\ 0 & 0 & 0 \end{pmatrix}$$

In this case, only two of them really matter.

• Example 1. Solve the equation $A\overline{x} = \overline{0}$ where

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & -2 \\ 2 & 1 & 1 \end{pmatrix}$$

Row reduction gives

$$A \sim \begin{pmatrix} 1 & 0 & -1/3 \\ 0 & 1 & 5/3 \\ 0 & 0 & 0 \end{pmatrix}$$

In this case, only two of them really matter.

• so $x_1 - \frac{1}{3}x_3 = 0$ and $x_2 + \frac{5}{3}x_3 = 0$ and x_3 can be whatever

(because it doesn't have a leading one).

• Example 1. Solve the equation $A\overline{x} = \overline{0}$.

• so
$$x_1 - \frac{1}{3}x_3 = 0$$
 and $x_2 + \frac{5}{3}x_3 = 0$ and x_3 can be whatever.

• Example 1. Solve the equation $A\overline{x} = \overline{0}$.

• so
$$x_1 - \frac{1}{3}x_3 = 0$$
 and $x_2 + \frac{5}{3}x_3 = 0$ and x_3 can be whatever. $x_1 = \frac{1}{3}x_3$

• Example 1. Solve the equation $A\overline{x} = \overline{0}$.

• so
$$x_1 - \frac{1}{3}x_3 = 0$$
 and $x_2 + \frac{5}{3}x_3 = 0$ and x_3 can be whatever.
 $x_1 = \frac{1}{3}x_3$
 $x_2 = -\frac{5}{3}x_3$

• Example 1. Solve the equation $A\overline{x} = \overline{0}$.

• so
$$x_1 - \frac{1}{3}x_3 = 0$$
 and $x_2 + \frac{5}{3}x_3 = 0$ and x_3 can be whatever.
 $x_1 = \frac{1}{3}x_3$
 $x_2 = -\frac{5}{3}x_3$
 $x_3 = C$

• Example 1. Solve the equation $A\overline{x} = \overline{0}$.

• so
$$x_1 - \frac{1}{3}x_3 = 0$$
 and $x_2 + \frac{5}{3}x_3 = 0$ and x_3 can be whatever.
 $x_1 = \frac{1}{3}x_3$ $x_1 = \frac{1}{3}C$
 $x_2 = -\frac{5}{3}x_3$
 $x_3 = C$

• Example 1. Solve the equation $A\overline{x} = \overline{0}$.

• so
$$x_1 - \frac{1}{3}x_3 = 0$$
 and $x_2 + \frac{5}{3}x_3 = 0$ and x_3 can be whatever.
 $x_1 = \frac{1}{3}x_3$ $x_1 = \frac{1}{3}C$
 $x_2 = -\frac{5}{3}x_3$ $x_2 = -\frac{5}{3}C$
 $x_3 = C$

• Example 1. Solve the equation $A\overline{x} = \overline{0}$.

• so
$$x_1 - \frac{1}{3}x_3 = 0$$
 and $x_2 + \frac{5}{3}x_3 = 0$ and x_3 can be whatever.
 $x_1 = \frac{1}{3}x_3$ $x_1 = \frac{1}{3}C$
 $x_2 = -\frac{5}{3}x_3$ $x_2 = -\frac{5}{3}C$
 $x_3 = C$

• Example 1. Solve the equation $A\overline{x} = \overline{0}$.

• so
$$x_1 - \frac{1}{3}x_3 = 0$$
 and $x_2 + \frac{5}{3}x_3 = 0$ and x_3 can be whatever.
 $x_1 = \frac{1}{3}x_3$ $x_1 = \frac{1}{3}C$
 $x_2 = -\frac{5}{3}x_3$ $x_2 = -\frac{5}{3}C$
 $x_3 = C$

• Thus, the solution can be written as $\overline{x} = \frac{1}{2}$

$$=\frac{C}{3}\begin{pmatrix}1\\-5\\3\end{pmatrix}.$$

• Example 1. Solve the equation $A\overline{x} = 0$.

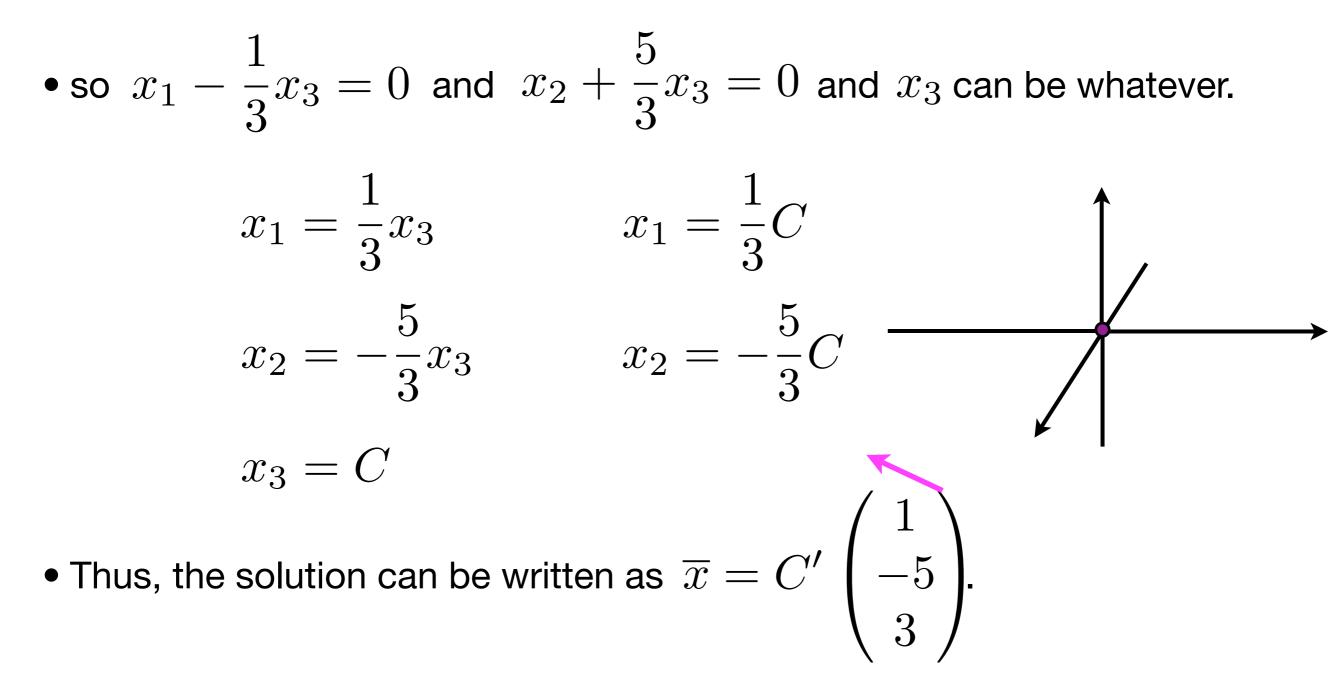
• so
$$x_1 - \frac{1}{3}x_3 = 0$$
 and $x_2 + \frac{5}{3}x_3 = 0$ and x_3 can be whatever.
 $x_1 = \frac{1}{3}x_3$ $x_1 = \frac{1}{3}C$
 $x_2 = -\frac{5}{3}x_3$ $x_2 = -\frac{5}{3}C$
 $x_3 = C$

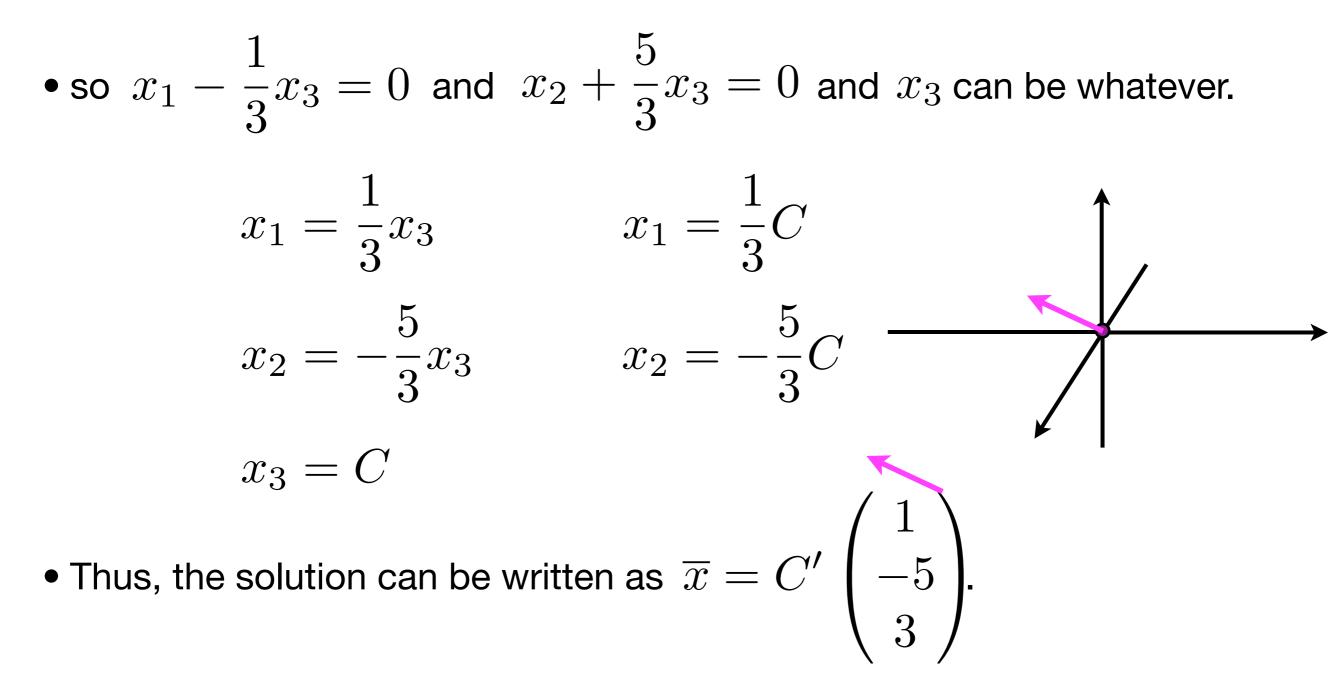
• Thus, the solution can be written as $\overline{x} = C' \begin{pmatrix} 1 \\ -5 \\ 3 \end{pmatrix}$.

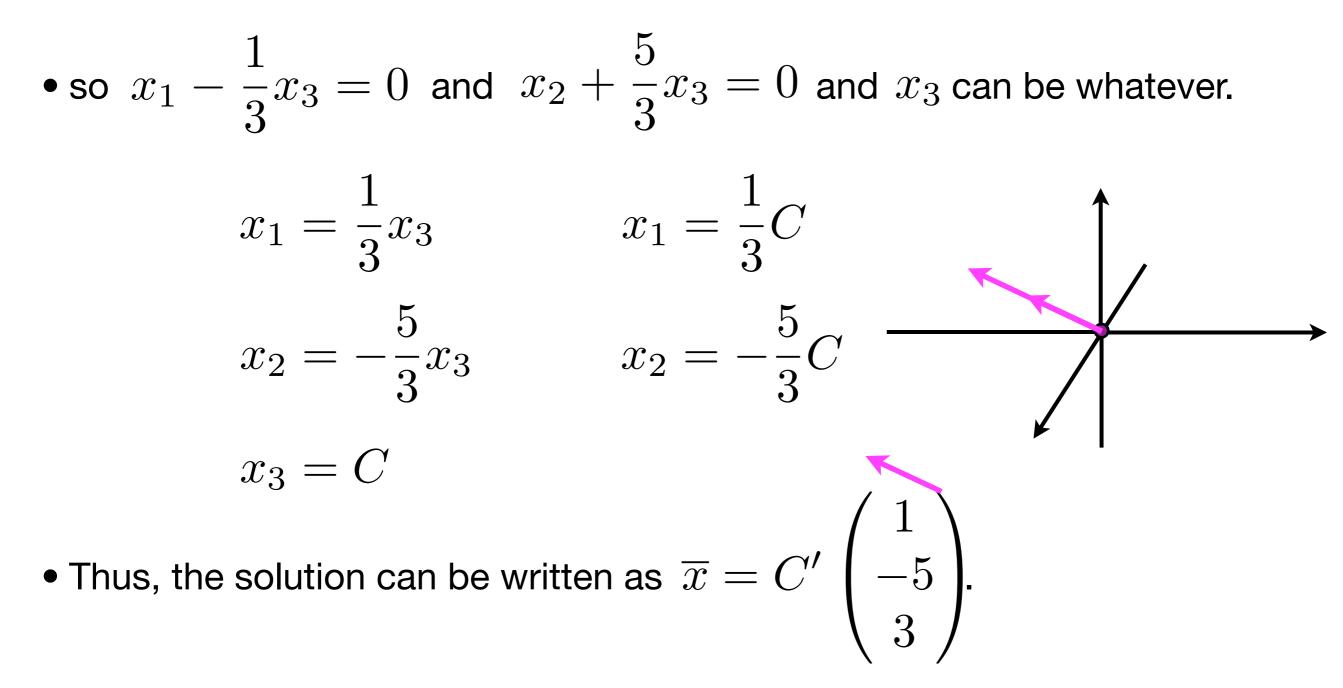
• Example 1. Solve the equation $A\overline{x} = \overline{0}$.

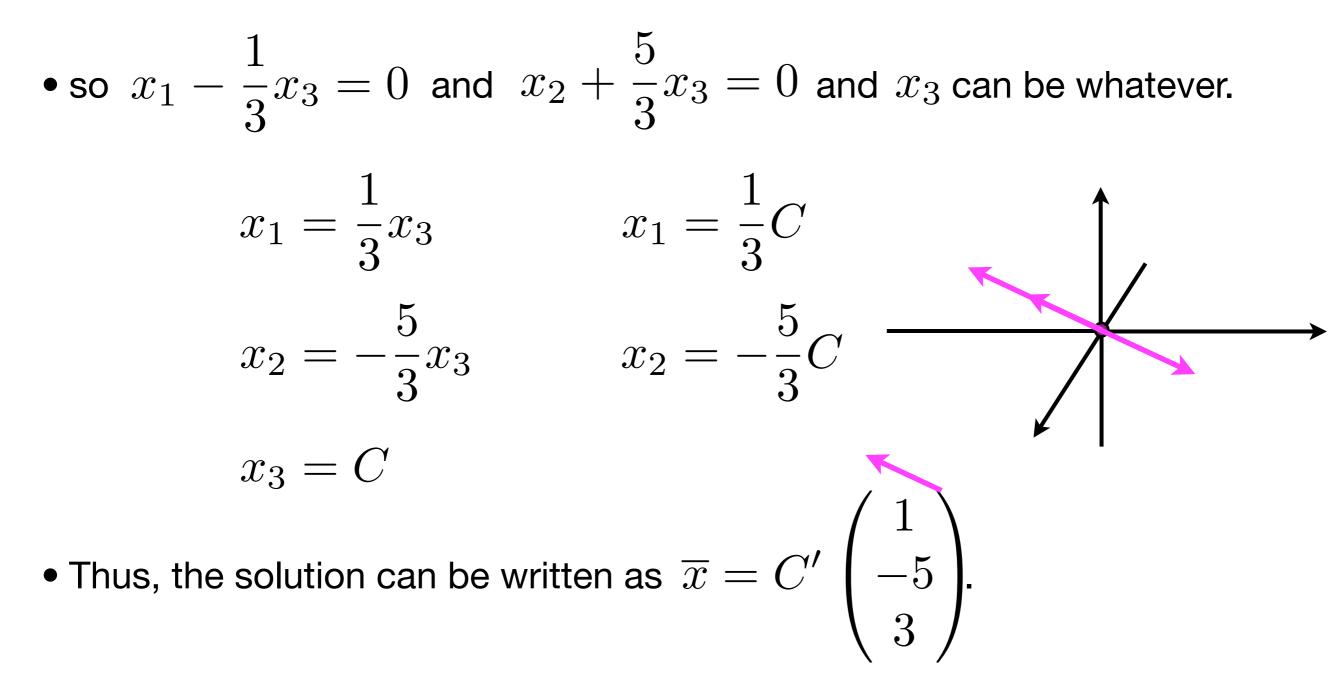
• so
$$x_1 - \frac{1}{3}x_3 = 0$$
 and $x_2 + \frac{5}{3}x_3 = 0$ and x_3 can be whatever.
 $x_1 = \frac{1}{3}x_3$ $x_1 = \frac{1}{3}C$
 $x_2 = -\frac{5}{3}x_3$ $x_2 = -\frac{5}{3}C$
 $x_3 = C$

• Thus, the solution can be written as $\overline{x} = C' \begin{pmatrix} -5 \\ 3 \end{pmatrix}$.









• Example 1. Solve the equation $A\overline{x} = \overline{0}$.

• so
$$x_1 - \frac{1}{3}x_3 = 0$$
 and $x_2 + \frac{5}{3}x_3 = 0$ and x_3 can be whatever.

$$x_1 = \frac{1}{3}x_3 \qquad x_1 = \frac{1}{3}C$$

$$x_2 = -\frac{5}{3}x_3 \qquad x_2 = -\frac{5}{3}C$$

$$x_3 = C$$
• Thus, the solution can be written as $\overline{x} = C' \begin{pmatrix} 1 \\ -5 \\ 3 \end{pmatrix}$.

• Example 2. Solve the equation $A\overline{x} = \overline{0}$ where

$$A = \begin{pmatrix} 1 & -2 & 1 \\ 2 & -4 & 2 \\ -1 & 2 & -1 \end{pmatrix}$$

• Example 2. Solve the equation $A\overline{x} = \overline{0}$ where

$$A = \begin{pmatrix} 1 & -2 & 1 \\ 2 & -4 & 2 \\ -1 & 2 & -1 \end{pmatrix}$$

• Example 2. Solve the equation $A\overline{x} = \overline{0}$ where

$$A = \begin{pmatrix} 1 & -2 & 1 \\ 2 & -4 & 2 \\ -1 & 2 & -1 \end{pmatrix}$$

Row reduction gives

$$A \sim \begin{pmatrix} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

• Example 2. Solve the equation $A\overline{x} = \overline{0}$ where

$$A = \begin{pmatrix} 1 & -2 & 1 \\ 2 & -4 & 2 \\ -1 & 2 & -1 \end{pmatrix}$$

Row reduction gives

$$A \sim \begin{pmatrix} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

• so $x_1 - 2x_2 + x_3 = 0$ and both x_2 and x_3 can be whatever.

• Example 2. Solve the equation $A\overline{x} = \overline{0}$ where

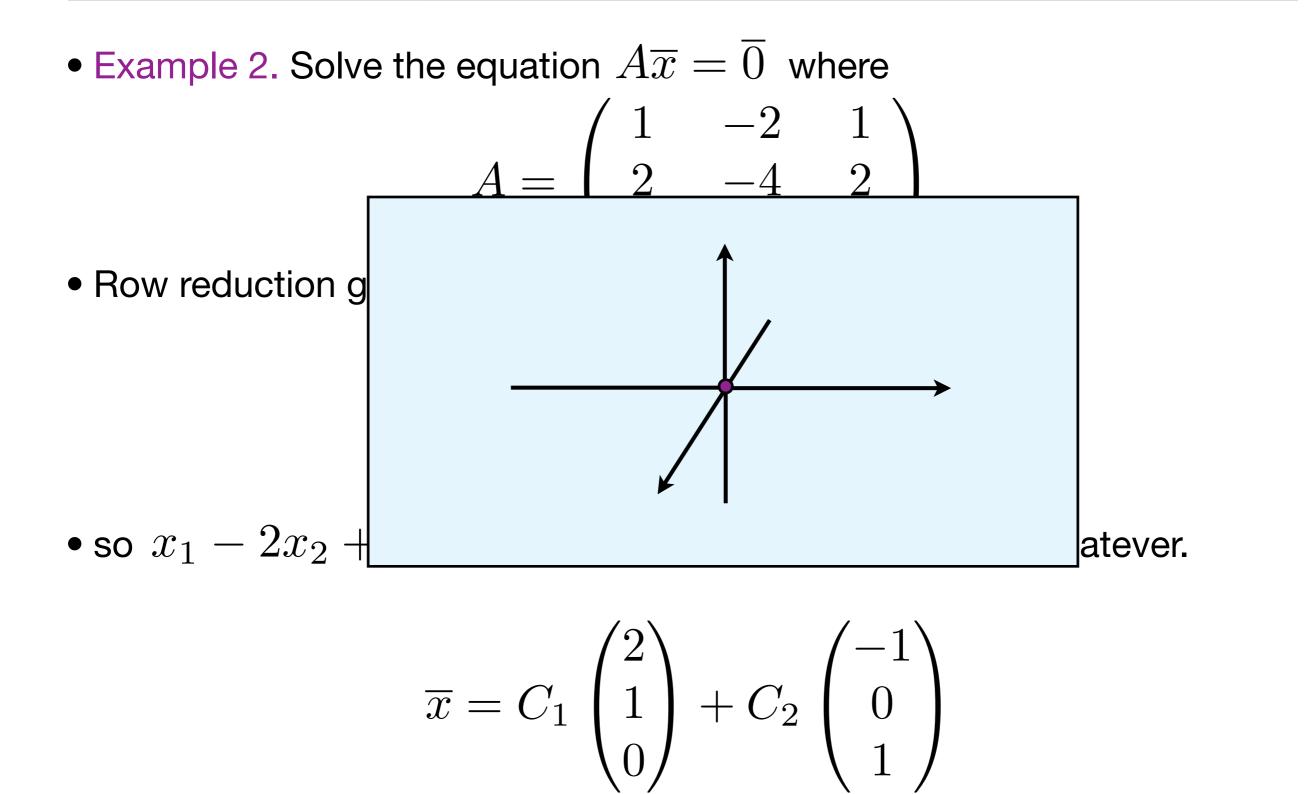
$$A = \begin{pmatrix} 1 & -2 & 1 \\ 2 & -4 & 2 \\ -1 & 2 & -1 \end{pmatrix}$$

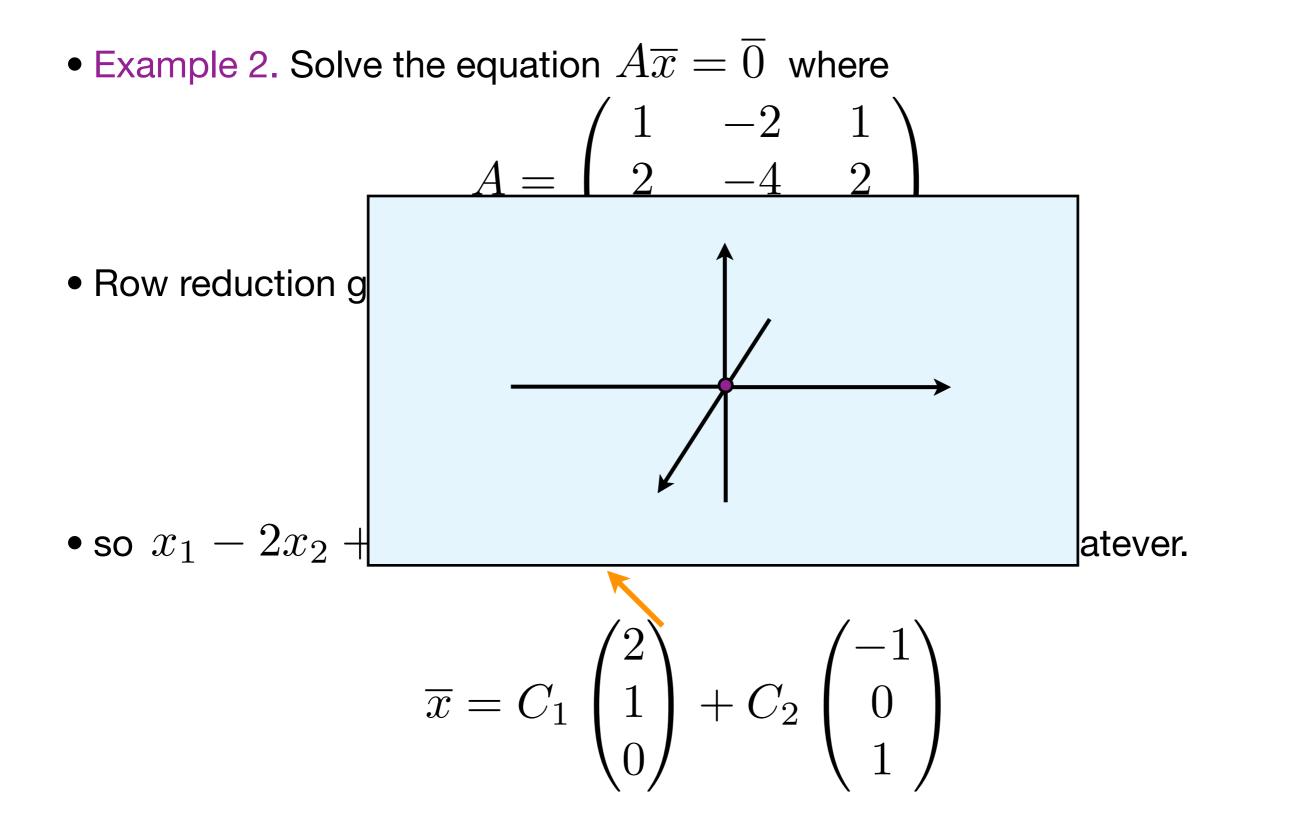
Row reduction gives

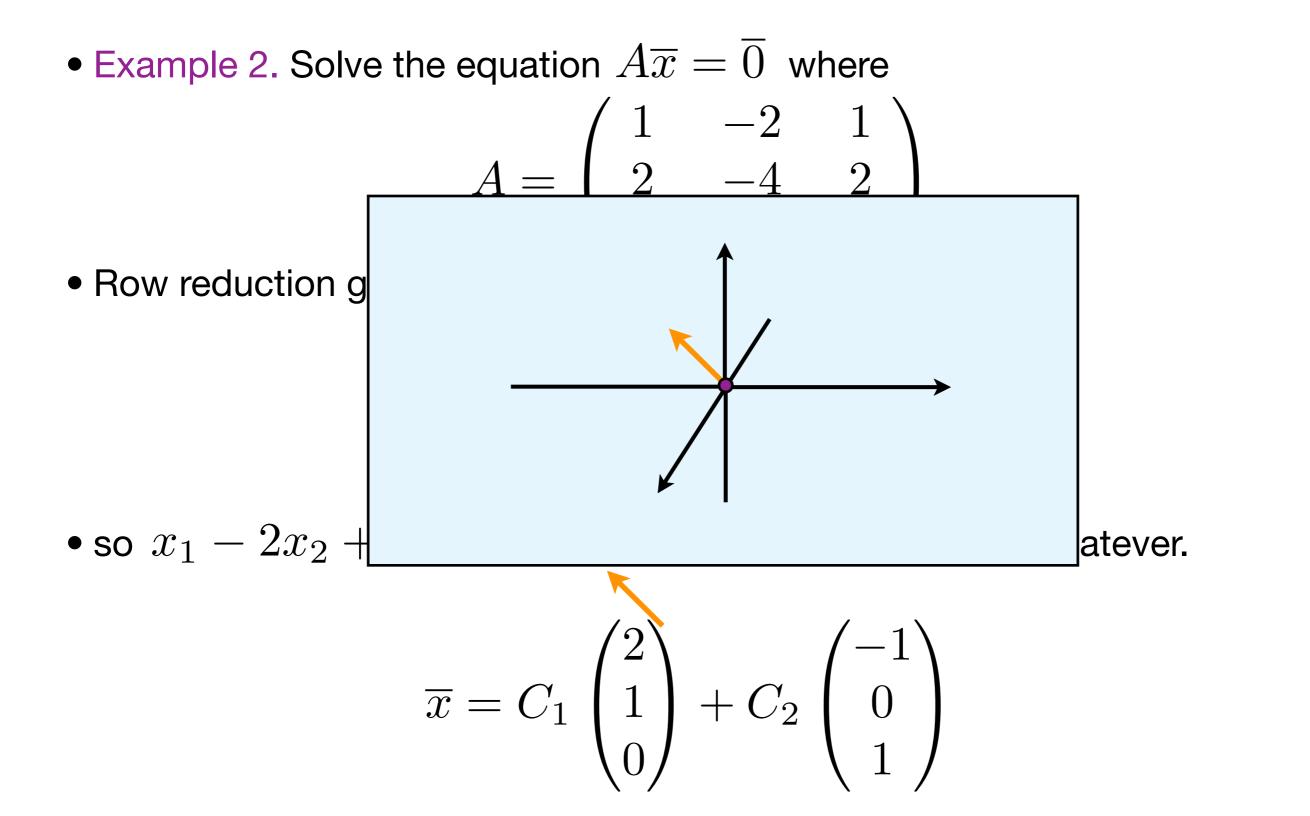
$$A \sim \begin{pmatrix} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

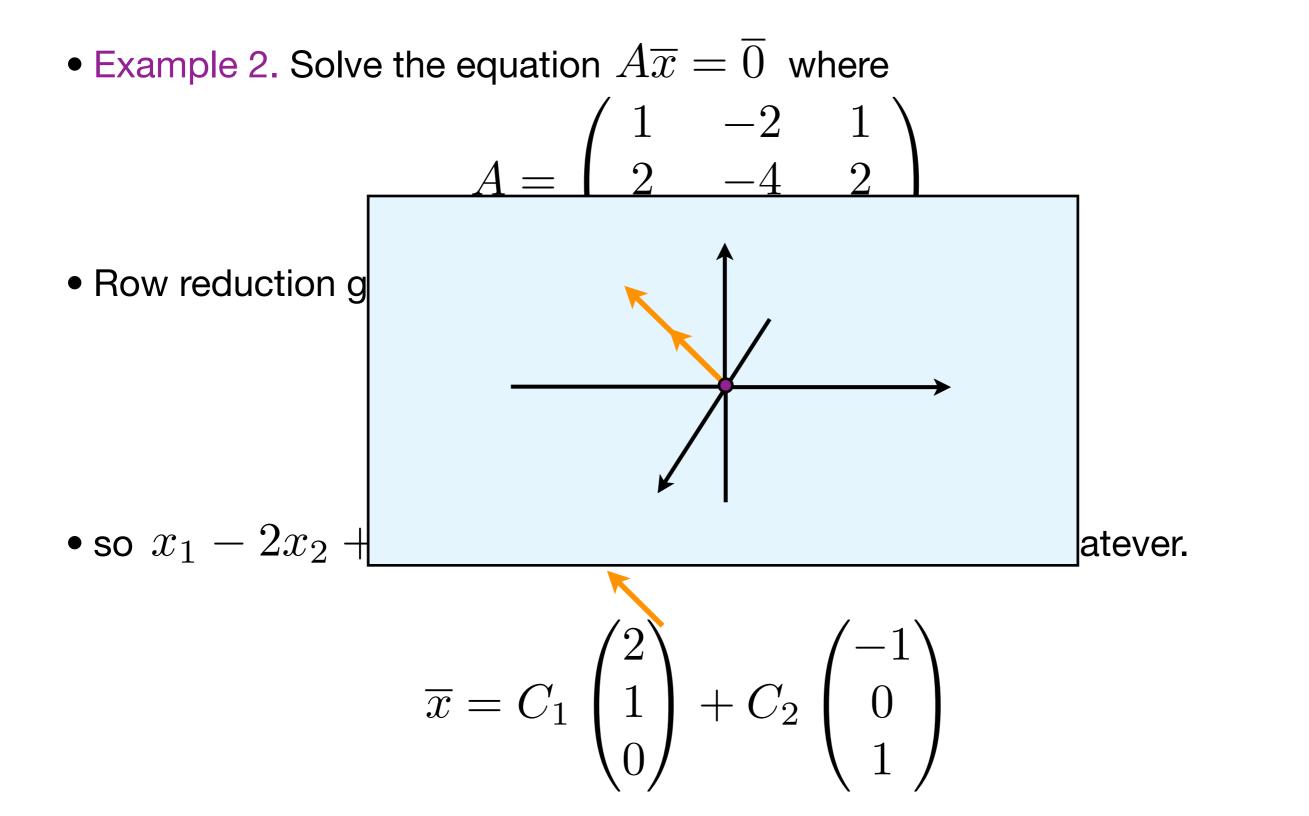
• so $x_1 - 2x_2 + x_3 = 0$ and both x_2 and x_3 can be whatever.

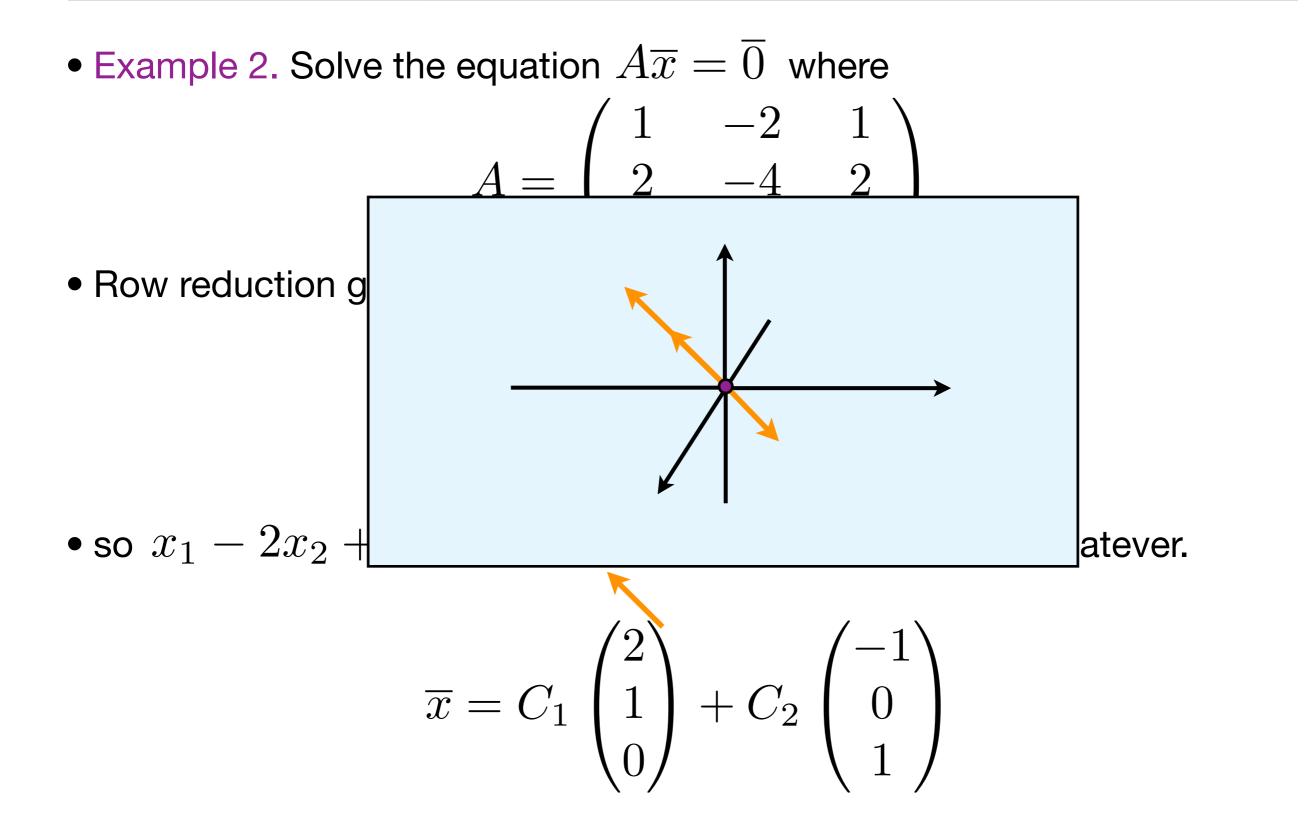
$$\overline{x} = C_1 \begin{pmatrix} 2\\1\\0 \end{pmatrix} + C_2 \begin{pmatrix} -1\\0\\1 \end{pmatrix}$$

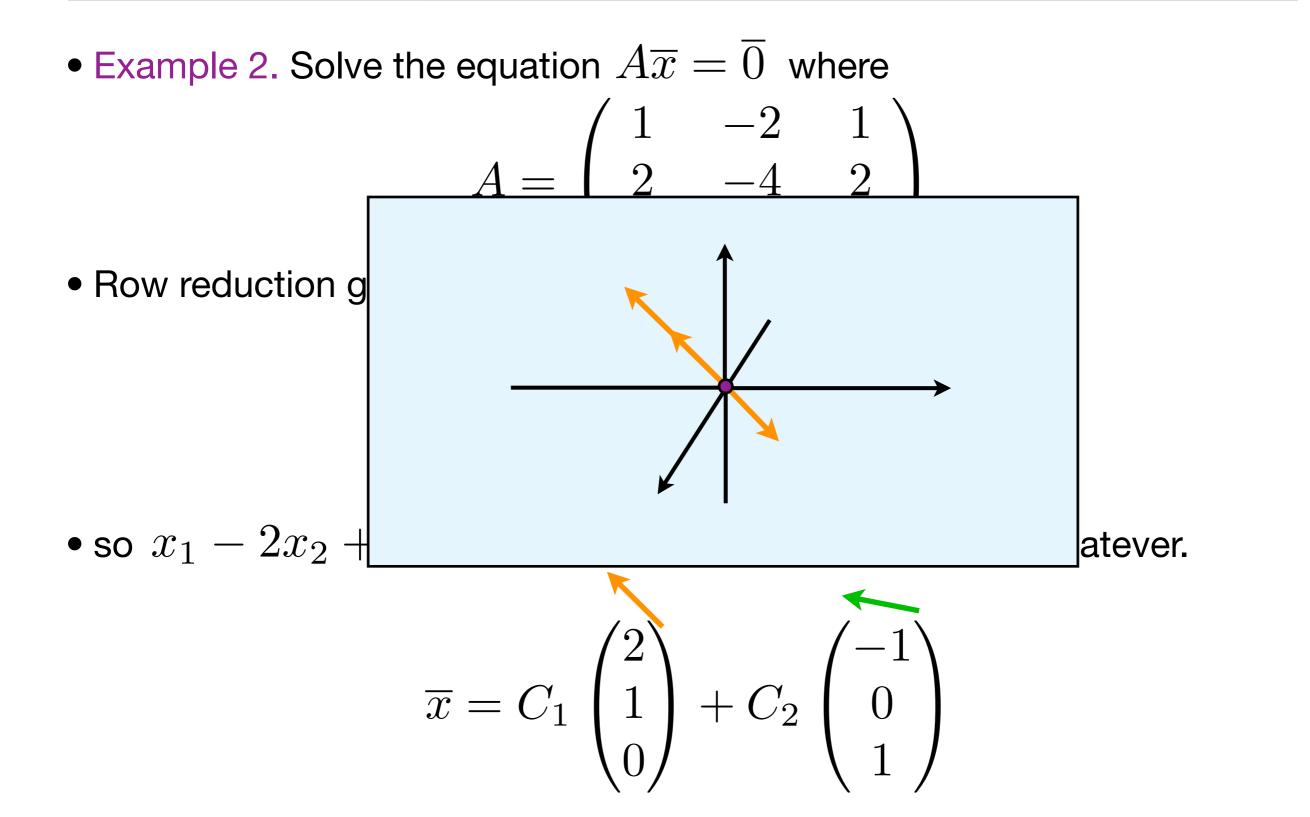


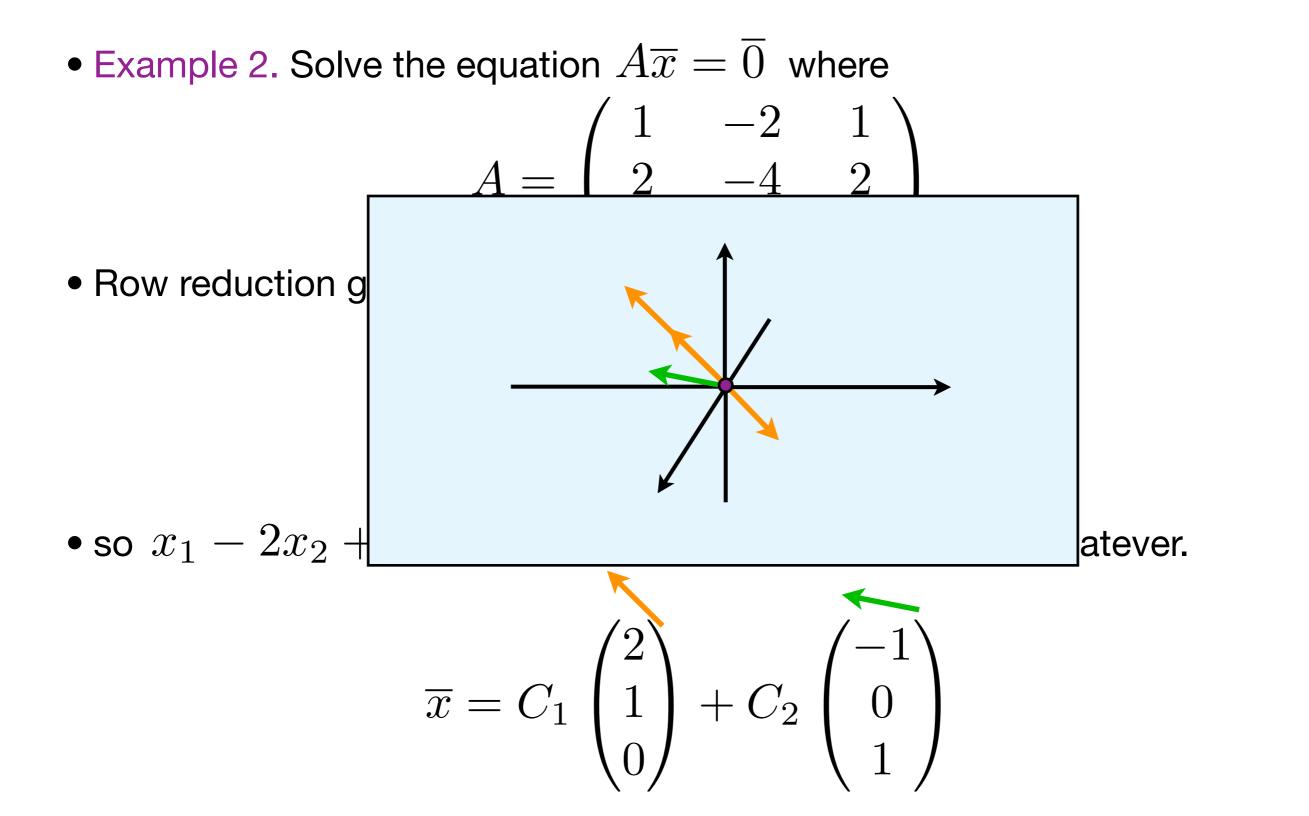


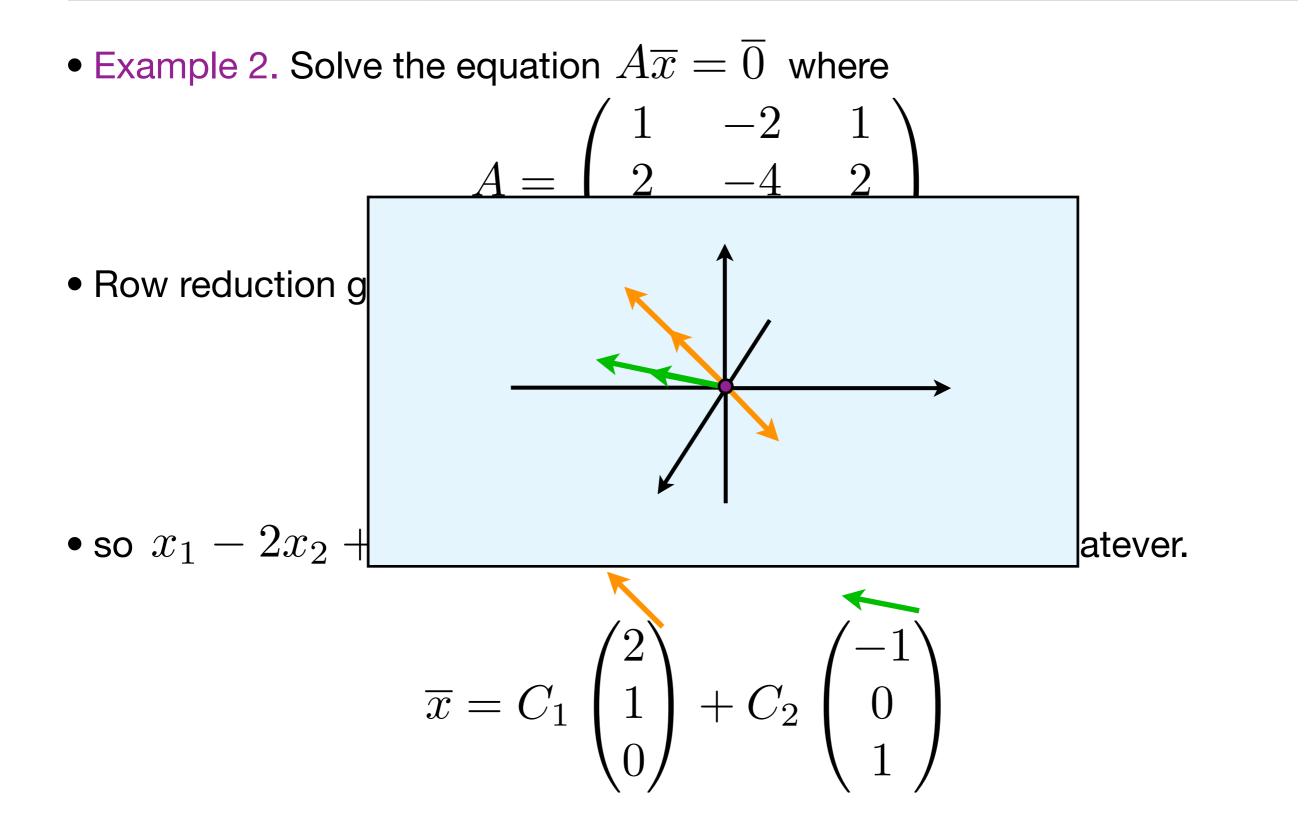


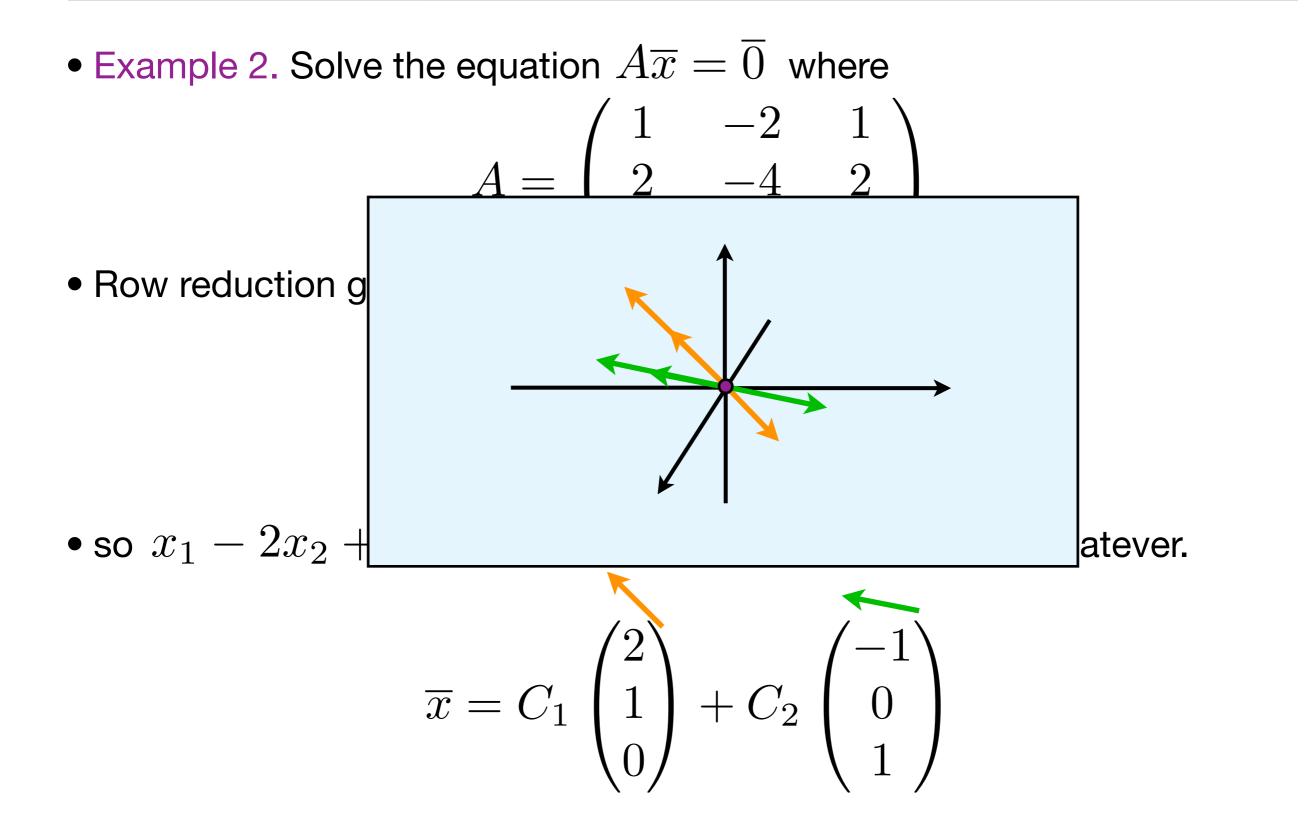


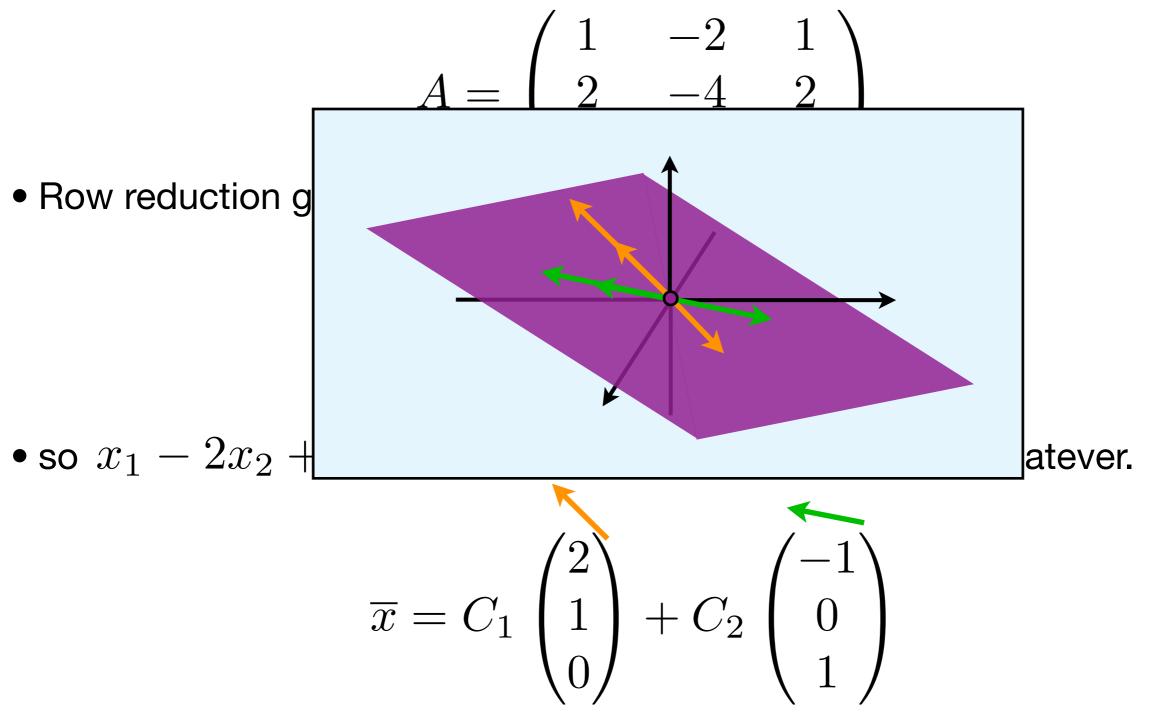












$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & -2 \\ 2 & 1 & 1 \end{pmatrix} \text{ and } \overline{b} = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}$$

• Example 3. Solve the equation $A\overline{x} = \overline{b}$ where

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & -2 \\ 2 & 1 & 1 \end{pmatrix} \text{ and } \overline{b} = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}$$

• Row reduction gives

$$\begin{pmatrix} 1 & 0 & -1/3 & 2/3 \\ 0 & 1 & 5/3 & 2/3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

• Example 3. Solve the equation $A\overline{x} = b$ where

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & -2 \\ 2 & 1 & 1 \end{pmatrix} \text{ and } \overline{b} = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}.$$

Row reduction gives

$$\begin{pmatrix} 1 & 0 & -1/3 & 2/3 \\ 0 & 1 & 5/3 & 2/3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

• so $x_1 - \frac{1}{3}x_3 = \frac{2}{3}$ and $x_2 + \frac{5}{3}x_3 = \frac{2}{3}$ and x_3 can be whatever.

• so
$$x_1 - \frac{1}{3}x_3 = \frac{2}{3}$$
 and $x_2 + \frac{5}{3}x_3 = \frac{2}{3}$ and x_3 can be whatever.

• so
$$x_1 - \frac{1}{3}x_3 = \frac{2}{3}$$
 and $x_2 + \frac{5}{3}x_3 = \frac{2}{3}$ and x_3 can be whatever.
 $x_1 = \frac{1}{3}x_3 + \frac{2}{3}$

• so
$$x_1 - \frac{1}{3}x_3 = \frac{2}{3}$$
 and $x_2 + \frac{5}{3}x_3 = \frac{2}{3}$ and x_3 can be whatever.
 $x_1 = \frac{1}{3}x_3 + \frac{2}{3}$ $x_2 = -\frac{5}{3}x_3 + \frac{2}{3}$

• so
$$x_1 - \frac{1}{3}x_3 = \frac{2}{3}$$
 and $x_2 + \frac{5}{3}x_3 = \frac{2}{3}$ and x_3 can be whatever.
 $x_1 = \frac{1}{3}x_3 + \frac{2}{3}$ $x_2 = -\frac{5}{3}x_3 + \frac{2}{3}$

$$\overline{x} = \frac{C}{3} \begin{pmatrix} 1\\ -5\\ 3 \end{pmatrix} + \begin{pmatrix} 2/3\\ 2/3\\ 0 \end{pmatrix}$$

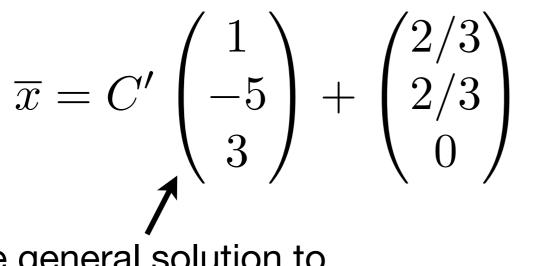
• so
$$x_1 - \frac{1}{3}x_3 = \frac{2}{3}$$
 and $x_2 + \frac{5}{3}x_3 = \frac{2}{3}$ and x_3 can be whatever.
 $x_1 = \frac{1}{2}x_3 + \frac{2}{2}$ $x_2 = -\frac{5}{2}x_3 + \frac{2}{2}$

$$x_1 = \frac{1}{3}x_3 + \frac{1}{3} \qquad x_2 = -\frac{1}{3}x_3 + \frac{1}{3}$$

$$\overline{x} = C' \begin{pmatrix} 1\\ -5\\ 3 \end{pmatrix} + \begin{pmatrix} 2/3\\ 2/3\\ 0 \end{pmatrix}$$

- Example 3. Solve the equation $A\overline{x} = b$.
- so $x_1 \frac{1}{3}x_3 = \frac{2}{3}$ and $x_2 + \frac{5}{3}x_3 = \frac{2}{3}$ and x_3 can be whatever. $1 + \frac{2}{3}x_3 = \frac{5}{3}x_3 = \frac{2}{3}$

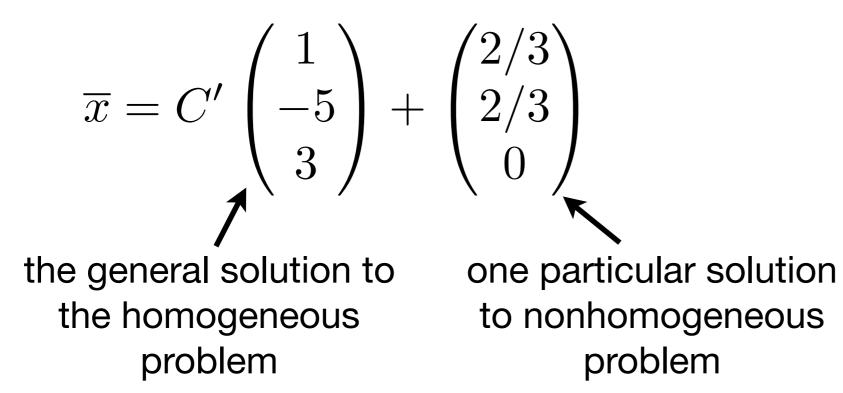
$$x_1 = \frac{1}{3}x_3 + \frac{1}{3} \qquad x_2 = -\frac{1}{3}x_3 + \frac{1}{3}$$



the general solution to the homogeneous problem

- Example 3. Solve the equation $A\overline{x} = b$.
- so $x_1 \frac{1}{3}x_3 = \frac{2}{3}$ and $x_2 + \frac{5}{3}x_3 = \frac{2}{3}$ and x_3 can be whatever.

$$x_1 = \frac{1}{3}x_3 + \frac{2}{3} \qquad x_2 = -\frac{5}{3}x_3 + \frac{2}{3}$$



• Example 3. Solve the equation $A\overline{x} = b$.

• Example 3. Solve the equation $A\overline{x} = b$.

• Example 3. Solve the equation $A\overline{x} = b$.

• Example 3. Solve the equation $A\overline{x} = b$.

• Example 3. Solve the equation $A\overline{x} = b$.

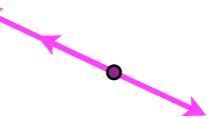
• Example 3. Solve the equation $A\overline{x} = b$.

• Example 3. Solve the equation $A\overline{x} = b$.

• To solve a nonhomogeneous differential equation:

- To solve a nonhomogeneous differential equation:
 - 1. Find the general solution to the associated homogeneous problem, $y_h(t)$.

- To solve a nonhomogeneous differential equation:
 - 1. Find the general solution to the associated homogeneous problem, y_h(t).



- To solve a nonhomogeneous differential equation:
 - Find the general solution to the associated homogeneous problem, y_h(t).

- To solve a nonhomogeneous differential equation:
 - 1. Find the general solution to the associated homogeneous problem, $y_h(t)$.

- To solve a nonhomogeneous differential equation:
 - Find the general solution to the associated homogeneous problem, y_h(t).

second order DE

- To solve a nonhomogeneous differential equation:
 - Find the general solution to the associated homogeneous problem, y_h(t).

2. Find a particular solution to the nonhomogeneous problem, $y_p(t)$.

second order DE

- To solve a nonhomogeneous differential equation:
 - Find the general solution to the associated homogeneous problem, y_h(t).

2. Find a particular solution to the nonhomogeneous problem, $y_p(t)$.

second order DE

- To solve a nonhomogeneous differential equation:
 - Find the general solution to the associated homogeneous problem, y_h(t).

2. Find a particular solution to the nonhomogeneous problem, $y_p(t)$.

second order DE

3. The general solution to the nonhomogeneous problem is their sum:

$$y = y_h + y_p = C_1 y_1 + C_2 y_2 + y_p$$

- To solve a nonhomogeneous differential equation:
 - Find the general solution to the associated homogeneous problem, y_h(t).

2. Find a particular solution to the nonhomogeneous problem, $y_p(t)$.

second order DE

3. The general solution to the nonhomogeneous problem is their sum:

$$y = y_h + y_p = C_1 y_1 + C_2 y_2 + y_p$$

- To solve a nonhomogeneous differential equation:
 - Find the general solution to the associated homogeneous problem, y_h(t).

2. Find a particular solution to the nonhomogeneous problem, $y_p(t)$.

3. The general solution to the nonhomogeneous problem is their sum:

$$y = y_h + y_p = C_1 y_1 + C_2 y_2 + y_p$$



second order DE

- To solve a nonhomogeneous differential equation:
 - Find the general solution to the associated homogeneous problem, y_h(t).

2. Find a particular solution to the nonhomogeneous problem, $y_p(t)$.

3. The general solution to the nonhomogeneous problem is their sum:

$$y = y_h + y_p = C_1 y_1 + C_2 y_2 + y_p$$

second order DE

• For step 2, try "Method of undetermined coefficients"...

• Example 4. Define the operator L[y] = y'' + 2y' - 3y. Find the general solution to $L[y] = e^{2t}$. That is, $y'' + 2y' - 3y = e^{2t}$.

- Example 4. Define the operator L[y] = y'' + 2y' 3y. Find the general solution to $L[y] = e^{2t}$. That is, $y'' + 2y' 3y = e^{2t}$.
 - Step 1: Solve the associated homogeneous equation

$$y'' + 2y' - 3y = 0.$$

- Example 4. Define the operator L[y] = y'' + 2y' 3y. Find the general solution to $L[y] = e^{2t}$. That is, $y'' + 2y' 3y = e^{2t}$.
 - Step 1: Solve the associated homogeneous equation

$$y'' + 2y' - 3y = 0.$$
$$y_h(t) = C_1 e^t + C_2 e^{-3t}$$

- Example 4. Define the operator L[y] = y'' + 2y' 3y. Find the general solution to $L[y] = e^{2t}$. That is, $y'' + 2y' 3y = e^{2t}$.
 - Step 1: Solve the associated homogeneous equation

$$y'' + 2y' - 3y = 0.$$
$$y_h(t) = C_1 e^t + C_2 e^{-3t}$$

- Example 4. Define the operator L[y] = y'' + 2y' 3y. Find the general solution to $L[y] = e^{2t}$. That is, $y'' + 2y' 3y = e^{2t}$.
 - Step 1: Solve the associated homogeneous equation

$$y'' + 2y' - 3y = 0.$$
$$y_h(t) = C_1 e^t + C_2 e^{-3t}$$

• Try
$$y_p(t) = Ae^{2t}$$

- Example 4. Define the operator L[y] = y'' + 2y' 3y. Find the general solution to $L[y] = e^{2t}$. That is, $y'' + 2y' 3y = e^{2t}$.
 - Step 1: Solve the associated homogeneous equation

$$y'' + 2y' - 3y = 0.$$
$$y_h(t) = C_1 e^t + C_2 e^{-3t}$$

• Try
$$y_p(t) = Ae^{2t}$$
.

•
$$L[y_p(t)] = L[Ae^{2t}] =$$

- Example 4. Define the operator L[y] = y'' + 2y' 3y. Find the general solution to $L[y] = e^{2t}$. That is, $y'' + 2y' 3y = e^{2t}$.
 - Step 1: Solve the associated homogeneous equation

$$y'' + 2y' - 3y = 0.$$
$$y_h(t) = C_1 e^t + C_2 e^{-3t}$$

• Try
$$y_p(t) = Ae^{2t}$$
.
• $L[y_p(t)] = L[Ae^{2t}] = \begin{cases} \text{(A) } 5e^{2t} & \text{(C) } 4e^{2t} \\ \text{(B) } 5Ae^{2t} & \text{(D) } 4Ae^{2t} \end{cases}$

- Example 4. Define the operator L[y] = y'' + 2y' 3y. Find the general solution to $L[y] = e^{2t}$. That is, $y'' + 2y' 3y = e^{2t}$.
 - Step 1: Solve the associated homogeneous equation

$$y'' + 2y' - 3y = 0.$$
$$y_h(t) = C_1 e^t + C_2 e^{-3t}$$

• Try
$$y_p(t) = Ae^{2t}$$
.
• $L[y_p(t)] = L[Ae^{2t}] = \begin{cases} \text{(A) } 5e^{2t} & \text{(C) } 4e^{2t} \\ \text{(B) } 5Ae^{2t} & \text{(D) } 4Ae^{2t} \end{cases}$

- Example 4. Define the operator L[y] = y'' + 2y' 3y. Find the general solution to $L[y] = e^{2t}$. That is, $y'' + 2y' 3y = e^{2t}$.
 - Step 1: Solve the associated homogeneous equation

$$y'' + 2y' - 3y = 0.$$
$$y_h(t) = C_1 e^t + C_2 e^{-3t}$$

• Step 2: What do you have to plug in to $L[\ \cdot\]$ to get e^{2t} out?

• Try
$$y_p(t) = Ae^{2t}$$
.
• $L[y_p(t)] = L[Ae^{2t}] = \begin{cases} \text{(A) } 5e^{2t} & \text{(C) } 4e^{2t} \\ \text{(B) } 5Ae^{2t} & \text{(D) } 4Ae^{2t} \end{cases}$

• A is an undetermined coefficient (until you determine it).

• Example 4. Define the operator L[y] = y'' + 2y' - 3y. Find the general solution to $L[y] = e^{2t}$. That is, $y'' + 2y' - 3y = e^{2t}$.

$$L[C_1e^t + C_2e^{-3t} + Ae^{2t}] = 0 + 5Ae^{2t}$$

- Example 4. Define the operator L[y] = y'' + 2y' 3y. Find the general solution to $L[y] = e^{2t}$. That is, $y'' + 2y' 3y = e^{2t}$.
 - Summarizing:

$$L[C_1e^t + C_2e^{-3t} + Ae^{2t}] = 0 + 5Ae^{2t}$$

- Example 4. Define the operator L[y] = y'' + 2y' 3y. Find the general solution to $L[y] = e^{2t}$. That is, $y'' + 2y' 3y = e^{2t}$.
 - Summarizing:
 - We know that, for any C₁ and C₂,

$$L[C_1e^t + C_2e^{-3t}] = 0$$

$$L[C_1e^t + C_2e^{-3t} + Ae^{2t}] = 0 + 5Ae^{2t}$$

- Example 4. Define the operator L[y] = y'' + 2y' 3y. Find the general solution to $L[y] = e^{2t}$. That is, $y'' + 2y' 3y = e^{2t}$.
 - Summarizing:
 - We know that, for any C₁ and C₂,

$$L[C_1e^t + C_2e^{-3t}] = 0$$

• We also know that

$$L[Ae^{2t}] = 5Ae^{2t}$$

$$L[C_1e^t + C_2e^{-3t} + Ae^{2t}] = 0 + 5Ae^{2t}$$

- Example 4. Define the operator L[y] = y'' + 2y' 3y. Find the general solution to $L[y] = e^{2t}$. That is, $y'' + 2y' 3y = e^{2t}$.
 - Summarizing:
 - We know that, for any C₁ and C₂,

$$L[C_1e^t + C_2e^{-3t}] = 0$$

• We also know that

$$L[Ae^{2t}] = 5Ae^{2t}$$

• Finally, by linearity, we know that

$$L[C_1e^t + C_2e^{-3t} + Ae^{2t}] = 0 + 5Ae^{2t}$$

- Example 4. Define the operator L[y] = y'' + 2y' 3y. Find the general solution to $L[y] = e^{2t}$. That is, $y'' + 2y' 3y = e^{2t}$.
 - Summarizing:
 - We know that, for any C₁ and C₂,

$$L[C_1e^t + C_2e^{-3t}] = 0$$

• We also know that

$$L[Ae^{2t}] = 5Ae^{2t}$$

• Finally, by linearity, we know that

$$L[C_1e^t + C_2e^{-3t} + Ae^{2t}] = 0 + 5Ae^{2t}$$

• So what's left to do to find our general solution? Pick A =?

- Example 4. Define the operator L[y] = y'' + 2y' 3y. Find the general solution to $L[y] = e^{2t}$. That is, $y'' + 2y' 3y = e^{2t}$.
 - Summarizing:
 - We know that, for any C₁ and C₂,

$$L[C_1e^t + C_2e^{-3t}] = 0$$

We also know that

$$L[Ae^{2t}] = 5Ae^{2t}$$

• Finally, by linearity, we know that

$$L[C_1e^t + C_2e^{-3t} + Ae^{2t}] = 0 + 5Ae^{2t}$$

• So what's left to do to find our general solution? Pick A = 1/5.

- Example 5. Find the general solution to the equation $y'' 4y = e^t$.
 - What is the solution to the associated homogeneous equation?

(A)
$$y_h(t) = C_1 e^{2t} + C_2 e^{-2t}$$

(B) $y_h(t) = C_1 \cos(2t) + C_2 \sin(2t)$
(C) $y_h(t) = C_1 e^{2t} + C_2 t e^{2t}$
(D) $y_h(t) = C_1 e^{2t} + C_2 e^{-2t} + e^t$
(E) $y_h(t) = C_1 \cos(2t) + C_2 \sin(2t) + e^t$

- Example 5. Find the general solution to the equation $y'' 4y = e^t$.
 - What is the solution to the associated homogeneous equation?

$$(A) \ y_h(t) = C_1 e^{2t} + C_2 e^{-2t}$$

$$(B) \ y_h(t) = C_1 \cos(2t) + C_2 \sin(2t)$$

$$(C) \ y_h(t) = C_1 e^{2t} + C_2 t e^{2t}$$

$$(D) \ y_h(t) = C_1 e^{2t} + C_2 e^{-2t} + e^t$$

$$(E) \ y_h(t) = C_1 \cos(2t) + C_2 \sin(2t) + e^t$$

- Example 5. Find the general solution to the equation $y'' 4y = e^t$.
 - What is the form of the particular solution?

(A)
$$y_p(t) = Ae^{2t}$$

(B)
$$y_p(t) = Ae^{-2t}$$

(C)
$$y_p(t) = Ate^{-2t}$$

(D)
$$y_p(t) = Ae^t$$

(E) $y_p(t) = Ate^t$

- Example 5. Find the general solution to the equation $y'' 4y = e^t$.
 - What is the form of the particular solution?

(A)
$$y_p(t) = Ae^{2t}$$

(B)
$$y_p(t) = Ae^{-2t}$$

(C)
$$y_p(t) = Ate^{-2t}$$

$$\bigstar(D) \quad y_p(t) = Ae^t$$

(E)
$$y_p(t) = Ate^t$$

- Example 5. Find the general solution to the equation $y'' 4y = e^t$.
 - What is the value of A that gives the particular solution (Ae^t) ?

(A)
$$A = 1$$

(B)
$$A = 3$$

(C)
$$A = -3$$

(D) A = 1/3

(E)
$$A = -1/3$$

- Example 5. Find the general solution to the equation $y'' 4y = e^t$.
 - What is the value of A that gives the particular solution (Ae^t) ?

(B)
$$A = 3$$

(C)
$$A = -3$$

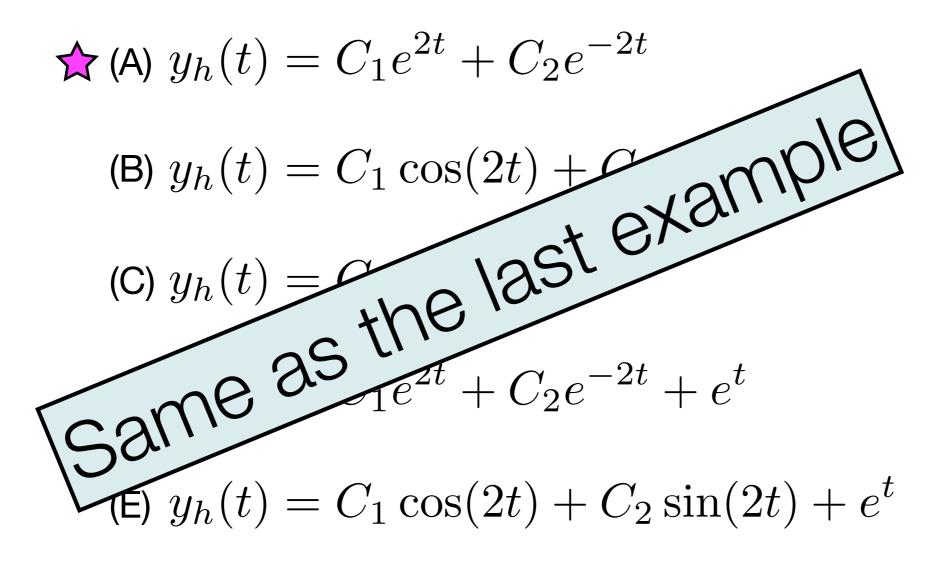
(D) A = 1/3

- Example 6. Find the general solution to the equation $y'' 4y = e^{2t}$.
 - What is the solution to the associated homogeneous equation?

(A)
$$y_h(t) = C_1 e^{2t} + C_2 e^{-2t}$$

(B) $y_h(t) = C_1 \cos(2t) + C_2 \sin(2t)$
(C) $y_h(t) = C_1 e^{2t} + C_2 t e^{2t}$
(D) $y_h(t) = C_1 e^{2t} + C_2 e^{-2t} + e^t$
(E) $y_h(t) = C_1 \cos(2t) + C_2 \sin(2t) + e^t$

- Example 6. Find the general solution to the equation $y'' 4y = e^{2t}$.
 - What is the solution to the associated homogeneous equation?



- Example 6. Find the general solution to the equation $y'' 4y = e^{2t}$.
 - What is the form of the particular solution?

(A)
$$y_p(t) = Ae^{2t}$$

(B)
$$y_p(t) = Ae^{-2t}$$

(C)
$$y_p(t) = Ate^{2t}$$

(D)
$$y_p(t) = Ae^t$$

(E) $y_p(t) = Ate^t$

- Example 6. Find the general solution to the equation $y'' 4y = e^{2t}$.
 - What is the form of the particular solution?

(A)
$$y_p(t) = Ae^{2t}$$
 $(Ae^{2t})'' - 4Ae^{2t} = 0 !$
(B) $y_p(t) = Ae^{-2t}$
(C) $y_p(t) = Ate^{2t}$
(D) $y_p(t) = Ae^t$
(E) $y_p(t) = Ate^t$

- Example 6. Find the general solution to the equation $y'' 4y = e^{2t}$.
 - What is the form of the particular solution?

(A)
$$y_p(t) = Ae^{2t}$$

(B)
$$y_p(t) = Ae^{-2t}$$

(C)
$$y_p(t) = Ate^{2t}$$

(D)
$$y_p(t) = Ae^t$$

(E) $y_p(t) = Ate^t$

$$(Ae^{2t})'' - 4Ae^{2t} = 0!$$

$$y' - y = e^t$$

- Example 6. Find the general solution to the equation $y'' 4y = e^{2t}$.
 - What is the form of the particular solution?

(A)
$$y_p(t) = Ae^{2t}$$

(B)
$$y_p(t) = Ae^{-2t}$$

(C)
$$y_p(t) = Ate^{2t}$$

(D)
$$y_p(t) = Ae^t$$

(E) $y_p(t) = Ate^t$

$$(Ae^{2t})'' - 4Ae^{2t} = 0!$$

$$y' - y = e^t$$
$$e^{-t}y' - e^{-t}y = 1$$

- Example 6. Find the general solution to the equation $y'' 4y = e^{2t}$.
 - What is the form of the particular solution?

(A)
$$y_p(t) = Ae^{2t}$$

(B)
$$y_p(t) = Ae^{-2t}$$

(C)
$$y_p(t) = Ate^{2t}$$

(D)
$$y_p(t) = Ae^t$$

(E) $y_p(t) = Ate^t$

$$(Ae^{2t})'' - 4Ae^{2t} = 0!$$

$$y' - y = e^{t}$$
$$e^{-t}y' - e^{-t}y = 1$$
$$y = te^{t} + Ce^{t}$$

- Example 6. Find the general solution to the equation $y'' 4y = e^{2t}$.
 - What is the form of the particular solution?

(A)
$$y_p(t) = Ae^{2t}$$

(B)
$$y_p(t) = Ae^{-2t}$$

(C)
$$y_p(t) = Ate^{2t}$$

(D)
$$y_p(t) = Ae^t$$

(E) $y_p(t) = Ate^t$

$$(Ae^{2t})'' - 4Ae^{2t} = 0!$$

$$y' - y = e^{t}$$
$$e^{-t}y' - e^{-t}y = 1$$
$$y = te^{t} + Ce^{t}$$

- Example 6. Find the general solution to the equation $y'' 4y = e^{2t}$.
 - What is the form of the particular solution?

(A)
$$y_p(t) = Ae^{2t}$$

(B)
$$y_p(t) = Ae^{-2t}$$

$$\bigstar$$
 (C) $y_p(t) = Ate^{2t}$

(D)
$$y_p(t) = Ae^t$$

(E) $y_p(t) = Ate^t$

$$(Ae^{2t})'' - 4Ae^{2t} = 0!$$

• Simpler example in which the RHS is a solution to the homogeneous problem.

$$y' - y = e^{t}$$
$$e^{-t}y' - e^{-t}y = 1$$
$$y = te^{t} + Ce^{t}$$

- Example 6. Find the general solution to the equation $y'' 4y = e^{2t}$.
 - What is the value of A that gives the particular solution (Ate^{2t}) ?

(A)
$$A = 1$$

(B) $A = 4$
(C) $A = -4$
(D) $A = 1/4$
(E) $A = -1/4$

- Example 6. Find the general solution to the equation $y'' 4y = e^{2t}$.
 - What is the value of A that gives the particular solution (Ate^{2t}) ?

(A)
$$A = 1$$

(B) A = 4
$$(Ate^{2t})'' - 4(Ate^{2t}) =$$

(C) A = -4

(D) A = 1/4

(E) A = -1/4

- Example 6. Find the general solution to the equation $y'' 4y = e^{2t}$.
 - What is the value of A that gives the particular solution (Ate^{2t}) ?

(B)
$$A = 4$$
 $(Ate^{2t})'' - 4(Ate^{2t}) = 4Ae^{2t}$

(C)
$$A = -4$$

(D) A = 1/4

(E) A = -1/4

- Example 6. Find the general solution to the equation $y'' 4y = e^{2t}$.
 - What is the value of A that gives the particular solution (Ate^{2t}) ?

(B) A = 4
$$(Ate^{2t})'' - 4(Ate^{2t}) = 4Ae^{2t}$$

(C)
$$A = -4$$

$$rightarrow$$
 (D) A = 1/4
(E) A = -1/4

- Example 6. Find the general solution to $y'' 4y = \cos(2t)$.
 - What is the form of the particular solution?

(A)
$$y_p(t) = A\cos(2t)$$

(B)
$$y_p(t) = A\sin(2t)$$

(C)
$$y_p(t) = A\cos(2t) + B\sin(2t)$$

(D)
$$y_p(t) = t(A\cos(2t) + B\sin(2t))$$

(E)
$$y_p(t) = e^{2t} (A\cos(2t) + B\sin(2t))$$

- Example 6. Find the general solution to $y'' 4y = \cos(2t)$.
 - What is the form of the particular solution?

★ (A)
$$y_p(t) = A\cos(2t)$$
(B) $y_p(t) = A\sin(2t)$
★ (C) $y_p(t) = A\cos(2t) + B\sin(2t)$
(D) $y_p(t) = t(A\cos(2t) + B\sin(2t))$
(E) $y_p(t) = e^{2t}(A\cos(2t) + B\sin(2t))$

- Example 6. Find the general solution to $y'' 4y = \cos(2t)$.
 - What is the form of the particular solution?

$$\bigstar (A) \quad y_p(t) = A\cos(2t)$$

$$(B) \quad y_p(t) = A\sin(2t)$$

$$rightarrow (C) \quad y_p(t) = A\cos(2t) + B\sin(2t)$$

(D)
$$y_p(t) = t(A\cos(2t) + B\sin(2t))$$

(E)
$$y_p(t) = e^{2t} (A\cos(2t) + B\sin(2t))$$

What small change to the DE makes (D) correct?

- Example 6. Find the general solution to $y'' + y' 4y = \cos(2t)$.
 - What is the form of the particular solution?

(A)
$$y_p(t) = A\cos(2t)$$

(B)
$$y_p(t) = A\sin(2t)$$

(C)
$$y_p(t) = A\cos(2t) + B\sin(2t)$$

(D)
$$y_p(t) = t(A\cos(2t) + B\sin(2t))$$

(E)
$$y_p(t) = e^{2t} (A\cos(2t) + B\sin(2t))$$

- Example 6. Find the general solution to $y'' + y' 4y = \cos(2t)$.
 - What is the form of the particular solution?

(A)
$$y_p(t) = A\cos(2t)$$

(B)
$$y_p(t) = A\sin(2t)$$

$$\bigstar (C) \quad y_p(t) = A\cos(2t) + B\sin(2t)$$

(D)
$$y_p(t) = t(A\cos(2t) + B\sin(2t))$$

(E)
$$y_p(t) = e^{2t} (A\cos(2t) + B\sin(2t))$$

- Example 6. Find the general solution to $y'' 4y = t^3$.
 - What is the form of the particular solution?

(A)
$$y_p(t) = At^3$$

(B)
$$y_p(t) = At^3 + Bt^2 + Ct$$

(C)
$$y_p(t) = At^3 + Bt^2 + Ct + D$$

(D)
$$y_p(t) = At^3 + Be^{2t} + Ce^{-2t}$$

(E) $y_p(t) = At^3 + Bt^2 + Ct + D + Ee^{2t} + Fe^{-2t}$

- Example 6. Find the general solution to $y'' 4y = t^3$.
 - What is the form of the particular solution?

(A)
$$y_p(t) = At^3$$

(B)
$$y_p(t) = At^3 + Bt^2 + Ct$$

$$rightarrow$$
 (C) $y_p(t) = At^3 + Bt^2 + Ct + D$

(D)
$$y_p(t) = At^3 + Be^{2t} + Ce^{-2t}$$

(E) $y_p(t) = At^3 + Bt^2 + Ct + D + Ee^{2t} + Fe^{-2t}$

- Example 6. Find the general solution to $y'' + 2y' = e^{2t} + t^3$.
 - What is the form of the particular solution?

(A)
$$y_p(t) = Ae^{2t} + Bt^3 + Ct^2 + Dt$$

(B)
$$y_p(t) = Ae^{2t} + Bt^3 + Ct^2 + Dt + E$$

(C)
$$y_p(t) = Ae^{2t} + (Bt^4 + Ct^3 + Dt^2 + Et)$$

(D)
$$y_p(t) = Ae^{2t} + Be^{-2t} + Ct^3 + Dt^2 + Et + F$$

(E) $y_p(t) = Ae^{2t} + Bte^{2t} + Ct^3 + Dt^2 + Et + F$

- Example 6. Find the general solution to $y'' + 2y' = e^{2t} + t^3$.
 - What is the form of the particular solution?

(A)
$$y_p(t) = Ae^{2t} + Bt^3 + Ct^2 + Dt$$

(B)
$$y_p(t) = Ae^{2t} + Bt^3 + Ct^2 + Dt + E$$

$$\bigstar (C) \ y_p(t) = Ae^{2t} + (Bt^4 + Ct^3 + Dt^2 + Et)$$

(D)
$$y_p(t) = Ae^{2t} + Be^{-2t} + Ct^3 + Dt^2 + Et + F$$

(E) $y_p(t) = Ae^{2t} + Bte^{2t} + Ct^3 + Dt^2 + Et + F$

- Example 6. Find the general solution to $y'' + 2y' = e^{2t} + t^3$.
 - What is the form of the particular solution?

(A)
$$y_p(t) = Ae^{2t} + Bt^3 + Ct^2 + Dt$$

(B)
$$y_p(t) = Ae^{2t} + Bt^3 + Ct^2 + Dt + E$$

$$(C) \ y_p(t) = Ae^{2t} + (Bt^4 + Ct^3 + Dt^2 + Et) \\ y_p(t) = Ae^{2t} + t(Bt^3 + Ct^2 + Dt + E) \\ (D) \ y_p(t) = Ae^{2t} + Be^{-2t} + Ct^3 + Dt^2 + Et + F$$

(E) $y_p(t) = Ae^{2t} + Bte^{2t} + Ct^3 + Dt^2 + Et + F$

- Example 6. Find the general solution to $y'' + 2y' = e^{2t} + t^3$.
 - What is the form of the particular solution?

(A)
$$y_p(t) = Ae^{2t} + Bt^3 + Ct^2 + Dt$$

(B)
$$y_p(t) = Ae^{2t} + Bt^3 + Ct^2 + Dt + E$$

$$(C) \ y_p(t) = Ae^{2t} + (Bt^4 + Ct^3 + Dt^2 + Et) \\ y_p(t) = Ae^{2t} + t(Bt^3 + Ct^2 + Dt + E) \\ (D) \ y_p(t) = Ae^{2t} + Be^{-2t} + Ct^3 + Dt^2 + Et + F$$

(E) $y_p(t) = Ae^{2t} + Bte^{2t} + Ct^3 + Dt^2 + Et + F$

For each wrong answer, for what DE is it the correct form?

- Example 6. Find the general solution to $y'' 4y = t^3 e^{2t}$.
 - What is the form of the particular solution?

(A)
$$y_p(t) = (At^3 + Bt^2 + Ct + D)e^{2t}$$

(B) $y_p(t) = (At^3 + Bt^2 + Ct)e^{2t}$
(C) $y_p(t) = (At^3 + Bt^2 + Ct)e^{2t} + (Dt^3 + Et^2 + Ft)e^{-2t}$

(D)
$$y_p(t) = (At^4 + Bt^3 + Ct^2 + Dt)e^{2t}$$

(E)
$$y_p(t) = (At^4 + Bt^3 + Ct^2 + Dt + E)e^{2t}$$

- Example 6. Find the general solution to $y'' 4y = t^3 e^{2t}$.
 - What is the form of the particular solution?

(A)
$$y_p(t) = (At^3 + Bt^2 + Ct + D)e^{2t}$$

(B) $y_p(t) = (At^3 + Bt^2 + Ct)e^{2t}$
(C) $y_p(t) = (At^3 + Bt^2 + Ct)e^{2t} + (Dt^3 + Et^2 + Ft)e^{-2t}$

 $\bigstar (D) \ y_p(t) = (At^4 + Bt^3 + Ct^2 + Dt)e^{2t}$

(E)
$$y_p(t) = (At^4 + Bt^3 + Ct^2 + Dt + E)e^{2t}$$

- Example 6. Find the general solution to $y'' 4y = t^3 e^{2t}$.
 - What is the form of the particular solution?

(A)
$$y_p(t) = (At^3 + Bt^2 + Ct + D)e^{2t}$$

(B)
$$y_p(t) = (At^3 + Bt^2 + Ct)e^{2t}$$

(C)
$$y_p(t) = (At^3 + Bt^2 + Ct)e^{2t} + (Dt^3 + Et^2 + Ft)e^{-2t}$$

$$(D) \ y_p(t) = (At^4 + Bt^3 + Ct^2 + Dt)e^{2t} \\ y_p(t) = t(At^3 + Bt^2 + Ct + D)e^{2t} \\ (E) \ y_p(t) = (At^4 + Bt^3 + Ct^2 + Dt + E)e^{2t}$$

• Summary - finding a particular solution to L[y] = g(t).

- Summary finding a particular solution to L[y] = g(t).
 - Include all functions that are part of the g(t) family (e.g. cos and sin)

- Summary finding a particular solution to L[y] = g(t).
 - Include all functions that are part of the g(t) family (e.g. cos and sin)
 - If part of the g(t) family is a solution to the homogeneous (h-)problem, use t x (g(t) family).

- Summary finding a particular solution to L[y] = g(t).
 - Include all functions that are part of the g(t) family (e.g. cos and sin)
 - If part of the g(t) family is a solution to the homogeneous (h-)problem, use t x (g(t) family).
 - If t x (part of the g(t) family), is a solution to the h-problem, use t² x (g (t) family).

- Summary finding a particular solution to L[y] = g(t).
 - Include all functions that are part of the g(t) family (e.g. cos and sin)
 - If part of the g(t) family is a solution to the homogeneous (h-)problem, use t x (g(t) family).
 - If t x (part of the g(t) family), is a solution to the h-problem, use t² x (g (t) family).
 - For sums, group terms into families and include a term for each.

- Summary finding a particular solution to L[y] = g(t).
 - Include all functions that are part of the g(t) family (e.g. cos and sin)
 - If part of the g(t) family is a solution to the homogeneous (h-)problem, use t x (g(t) family).
 - If t x (part of the g(t) family), is a solution to the h-problem, use t² x (g (t) family).
 - For sums, group terms into families and include a term for each.
 - For products of families, use the above rules and multiply them.

- Summary finding a particular solution to L[y] = g(t).
 - Include all functions that are part of the g(t) family (e.g. cos and sin)
 - If part of the g(t) family is a solution to the homogeneous (h-)problem, use t x (g(t) family).
 - If t x (part of the g(t) family), is a solution to the h-problem, use t² x (g (t) family).
 - For sums, group terms into families and include a term for each.
 - For products of families, use the above rules and multiply them.
 - If your guess includes a solution to the h-problem, you may as well remove it as it won't survive L[] so you won't be able to determine its undetermined coefficient.