Matrix review (eigen-calculations)

- Find eigenvalues and eigenvectors of $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$.

Matrix review (eigen-calculations)

- Find eigenvalues and eigenvectors of $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$.
- Looking for values λ and vectors \mathbf{v} for which $A \mathbf{v}=\lambda \mathbf{v}$.

Matrix review (eigen-calculations)

- Find eigenvalues and eigenvectors of $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$.
- Looking for values λ and vectors \mathbf{v} for which $A \mathbf{v}=\lambda \mathbf{v}$.
- What are the eigenvalues of A ?
(A) 1 and -3
(B) -1 and 3
(C) 1 and 3
(D) -1 and -3
(E) Explain, please.

Matrix review (eigen-calculations)

- Find eigenvalues and eigenvectors of $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$.
- Looking for values λ and vectors \mathbf{v} for which $A \mathbf{v}=\lambda \mathbf{v}$.
- What are the eigenvalues of A ?
(A) 1 and -3
(B) -1 and 3
(C) 1 and 3
(D) -1 and -3
(E) Explain, please.

Matrix review (eigen-calculations)

- Find eigenvalues and eigenvectors of $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$.
- Looking for values λ and vectors \mathbf{v} for which $A \mathbf{v}=\lambda \mathbf{v}$.

Matrix review (eigen-calculations)

- Find eigenvalues and eigenvectors of $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$.
- Looking for values λ and vectors \mathbf{v} for which $A \mathbf{v}=\lambda \mathbf{v}$.

Matrix review (eigen-calculations)

- Find eigenvalues and eigenvectors of $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$.
- Looking for values λ and vectors \mathbf{v} for which $A \mathbf{v}=\lambda \mathbf{v}$.

$$
\begin{aligned}
& A \mathbf{v}-\lambda \mathbf{v}=\mathbf{0} \\
& (A-\lambda I) \mathbf{v}=\mathbf{0} \\
& \operatorname{det}(A-\lambda I)=0 \\
& \operatorname{det}\left(\begin{array}{cc}
1-\lambda & 1 \\
4 & 1-\lambda
\end{array}\right)=0 \\
& (1-\lambda)^{2}-4=0 \\
& \left(\lambda^{2}-2 \lambda-3=0\right) \\
& \lambda=1 \pm 2=-1,3
\end{aligned}
$$

Matrix review (eigen-calculations)

- Find eigenvalues and eigenvectors of $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$.
- Looking for values λ and vectors \mathbf{v} for which $A \mathbf{v}=\lambda \mathbf{v}$.

$$
\begin{array}{ll}
A \mathbf{v}-\lambda \mathbf{v}=\mathbf{0} & \text { - What are the eigenvectors } \\
(A-\lambda I) \mathbf{v}=\mathbf{0} & \text { associated with } \lambda_{\mathbf{1}}=-1 \text { ? } \\
\operatorname{det}(A-\lambda I)=0 & \text { (A) } \mathbf{v}_{\mathbf{1}}=\binom{1}{-2} \\
\operatorname{det}\left(\begin{array}{cc}
1-\lambda & 1 \\
4 & 1-\lambda
\end{array}\right)=0 & \text { (B) } \mathbf{v}_{\mathbf{1}}=c\binom{1}{-2} \\
(1-\lambda)^{2}-4=0 & \text { (C) } \mathbf{v}_{\mathbf{1}}=\binom{2}{1} \\
\left(\lambda^{2}-2 \lambda-3=0\right) & \text { (D) } \mathbf{v}_{\mathbf{1}}=c\binom{2}{1}
\end{array}
$$

Matrix review (eigen-calculations)

- Find eigenvalues and eigenvectors of $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$.
- Looking for values λ and vectors \mathbf{v} for which $A \mathbf{v}=\lambda \mathbf{v}$.

$$
\begin{array}{ll}
A \mathbf{v}-\lambda \mathbf{v}=\mathbf{0} & \begin{array}{l}
\text { What are the eigenvectors } \\
\text { associated with } \lambda_{1}=-1 ?
\end{array} \\
(A-\lambda I) \mathbf{v}=\mathbf{0} & \text { (A) } \mathbf{v}_{\mathbf{1}}=\binom{1}{-2} \\
\operatorname{det}(A-\lambda I)=0 & \text { (C) } \mathbf{v}_{\mathbf{1}}=\binom{2}{1} \\
\operatorname{det}\left(\begin{array}{cc}
1-\lambda & 1 \\
4 & 1-\lambda
\end{array}\right)=0 & \text { (B) } \mathbf{v}_{\mathbf{1}}=c\binom{1}{-2} \\
(1-\lambda)^{2}-4=0 & \text { (D) } \mathbf{v}_{\mathbf{1}}=c\binom{2}{1}
\end{array}
$$

Matrix review (eigen-calculations)

- Find eigenvalues and eigenvectors of $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$.
- Looking for values λ and vectors \mathbf{v} for which $A \mathbf{v}=\lambda \mathbf{v}$.

$$
\begin{aligned}
& A \mathbf{v}-\lambda \mathbf{v}=\mathbf{0} \\
& (A-\lambda I) \mathbf{v}=\mathbf{0} \\
& \operatorname{det}(A-\lambda I)=0 \\
& \operatorname{det}\left(\begin{array}{cc}
1-\lambda & 1 \\
4 & 1-\lambda
\end{array}\right)=0 \\
& (1-\lambda)^{2}-4=0 \\
& \left(\lambda^{2}-2 \lambda-3=0\right) \\
& \lambda=1 \pm 2=-1,3
\end{aligned}
$$

Matrix review (eigen-calculations)

- Find eigenvalues and eigenvectors of $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$.
- Looking for values λ and vectors \mathbf{v} for which $A \mathbf{v}=\lambda \mathbf{v}$.

$$
\begin{aligned}
& A \mathbf{v}-\lambda \mathbf{v}=\mathbf{0} \\
& (A-\lambda I) \mathbf{v}=\mathbf{0} \\
& \operatorname{det}(A-\lambda I)=0 \\
& \operatorname{det}\left(\begin{array}{cc}
1-\lambda & 1 \\
4 & 1-\lambda
\end{array}\right)=0 \\
& (1-\lambda)^{2}-4=0 \\
& \left(\lambda^{2}-2 \lambda-3=0\right) \\
& \lambda=1 \pm 2=-1,3
\end{aligned}
$$

Matrix review (eigen-calculations)

- Find eigenvalues and eigenvectors of $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$.
- Looking for values λ and vectors \mathbf{v} for which $A \mathbf{v}=\lambda \mathbf{v}$.

$$
\begin{aligned}
& A \mathbf{v}-\lambda \mathbf{v}=\mathbf{0} \\
& (A-\lambda I) \mathbf{v}=\mathbf{0} \\
& \operatorname{det}(A-\lambda I)=0 \\
& \operatorname{det}\left(\begin{array}{cc}
1-\lambda & 1 \\
4 & 1-\lambda
\end{array}\right)=0 \\
& (1-\lambda)^{2}-4=0 \\
& \left(\lambda^{2}-2 \lambda-3=0\right) \\
& \lambda=1 \pm 2=-1,3
\end{aligned}
$$

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& (A+I) \mathbf{v}_{\mathbf{1}}=\left(\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right) \mathbf{v}_{\mathbf{1}}=0 \\
& \left(\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right) \sim\left(\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right) \\
& 2 v_{1}+v_{2}=0 \\
& \quad \mathbf{v}_{\mathbf{1}}=\binom{1}{-2} \\
& \text { (and any scalar multiple of it) }
\end{aligned}
$$

(and any scalar multiple of it)

Matrix review (eigen-calculations)

- Find eigenvalues and eigenvectors of $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$.
- Looking for values λ and vectors \mathbf{v} for which $A \mathbf{v}=\lambda \mathbf{v}$.

$$
\begin{array}{lc}
A \mathbf{v}-\lambda \mathbf{v}=\mathbf{0} & \lambda_{1}=-1 \\
(A-\lambda I) \mathbf{v}=\mathbf{0} & \mathbf{v}_{\mathbf{1}}=\binom{1}{-2} \\
\operatorname{det}(A-\lambda I)=0 & \lambda_{2}=3 \\
\operatorname{det}\left(\begin{array}{cc}
1-\lambda & 1 \\
4 & 1-\lambda
\end{array}\right)=0 & \mathbf{v}_{\mathbf{2}}=\binom{1}{2} \\
(1-\lambda)^{2}-4=0 & \\
\left(\lambda^{2}-2 \lambda-3=0\right) & \\
\lambda=1 \pm 2=-1,3 &
\end{array}
$$

Matrix review (eigen-calculations)

- Find eigenvalues and eigenvectors of $A=\left(\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right)$.
- Looking for values λ and vectors \mathbf{v} for which $A \mathbf{v}=\lambda \mathbf{v}$.

$$
\begin{aligned}
& A \mathbf{v}-\lambda \mathbf{v}=\mathbf{0} \\
& (A-\lambda I) \mathbf{v}=\mathbf{0} \\
& \operatorname{det}(A-\lambda I)=0 \\
& \operatorname{det}\left(\begin{array}{cc}
1-\lambda & 1 \\
4 & 1-\lambda
\end{array}\right)=0 \\
& (1-\lambda)^{2}-4=0 \\
& \left(\lambda^{2}-2 \lambda-3=0\right) \\
& \lambda=1 \pm 2=-1,3
\end{aligned}
$$

$$
\begin{aligned}
& \lambda_{1}=-1 \\
& \mathbf{v}_{\mathbf{1}}=\binom{1}{-2}
\end{aligned}
$$

$$
\lambda_{2}=3
$$

$$
\mathbf{v}_{\mathbf{2}}=\binom{1}{2}
$$

- How do we use eigenvalues and eigenvectors to construct a general solution?

