• Find eigenvalues and eigenvectors of $A = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$.

- Find eigenvalues and eigenvectors of $A = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$. Looking for values λ and vectors \mathbf{v} for which $A\mathbf{v} = \lambda \mathbf{v}$.

- Find eigenvalues and eigenvectors of $A = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$.
- Looking for values λ and vectors \mathbf{v} for which $A\mathbf{v} = \lambda \mathbf{v}$.
- What are the eigenvalues of A?

(A) 1 and -3

(B) -1 and 3

(C) 1 and 3

(D) -1 and -3

(E) Explain, please.

- Find eigenvalues and eigenvectors of $A = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$.
- Looking for values λ and vectors \mathbf{v} for which $A\mathbf{v} = \lambda \mathbf{v}$.
- What are the eigenvalues of A?

(A) 1 and -3

숨 (B) -1 and 3

(C) 1 and 3

(D) -1 and -3

(E) Explain, please.

- Find eigenvalues and eigenvectors of $A = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$. Looking for values λ and vectors \mathbf{v} for which $A\mathbf{v} = \lambda \mathbf{v}$.

- Find eigenvalues and eigenvectors of $A = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$. Looking for values λ and vectors \mathbf{v} for which $A\mathbf{v} = \lambda \mathbf{v}$.

- Find eigenvalues and eigenvectors of $A = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$.
- Looking for values λ and vectors \mathbf{v} for which $A\mathbf{v} = \lambda \mathbf{v}$.

 $\mathbf{A}\mathbf{v} - \lambda \mathbf{v} = \mathbf{0}$ $(A - \lambda I)\mathbf{v} = \mathbf{0}$ $\det(A - \lambda I) = 0$ $\det \begin{pmatrix} 1-\lambda & 1\\ 4 & 1-\lambda \end{pmatrix} = 0$ $(1-\lambda)^2 - 4 = 0$ $(\lambda^2 - 2\lambda - 3 = 0)$ $\lambda = 1 \pm 2 = -1, 3$

- Find eigenvalues and eigenvectors of $A = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$.
- Looking for values λ and vectors \mathbf{v} for which $A\mathbf{v} = \lambda \mathbf{v}$.

 $\mathbf{A}\mathbf{v} - \lambda \mathbf{v} = \mathbf{0}$ $(A - \lambda I)\mathbf{v} = \mathbf{0}$ $\det(A - \lambda I) = 0$ $\det \begin{pmatrix} 1-\lambda & 1\\ 4 & 1-\lambda \end{pmatrix} = 0 \quad \text{(B) } \mathbf{v_1} = c \begin{pmatrix} 1\\ -2 \end{pmatrix}$ $(1-\lambda)^2 - 4 = 0$ $(\lambda^2 - 2\lambda - 3 = 0)$ $\lambda = 1 \pm 2 = -1, 3$

 What are the eigenvectors associated with $\lambda_1 = -1$? (A) $\mathbf{v_1} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ (C) $\mathbf{v_1} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ (E) Explain, please. (D) $\mathbf{v_1} = c \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ 10

- Find eigenvalues and eigenvectors of $A = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$.
- Looking for values λ and vectors \mathbf{v} for which $A\mathbf{v} = \lambda \mathbf{v}$.

 $\mathbf{A}\mathbf{v} - \lambda \mathbf{v} = \mathbf{0}$ $(A - \lambda I)\mathbf{v} = \mathbf{0}$ What are the eigenvectors associated with $\lambda_1 = -1$? (A) $\mathbf{v_1} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ $\det(A - \lambda I) = 0$ $\det \begin{pmatrix} 1-\lambda & 1\\ 4 & 1-\lambda \end{pmatrix} = 0 \quad \text{(B)} \quad \mathbf{v_1} = c \begin{pmatrix} 1\\ -2 \end{pmatrix}$ $(1-\lambda)^2 - 4 = 0$ (C) $\mathbf{v_1} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ $(\lambda^2 - 2\lambda - 3 = 0)$ (E) Explain, please. $\lambda = 1 \pm 2 = -1, 3$ (D) $\mathbf{v_1} = c \begin{pmatrix} 2 \\ 1 \end{pmatrix}$ 10

- Find eigenvalues and eigenvectors of $A = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$.
- Looking for values λ and vectors \mathbf{v} for which $A\mathbf{v} = \lambda \mathbf{v}$.

 $A\mathbf{v} - \lambda \mathbf{v} = \mathbf{0}$ $(A - \lambda I)\mathbf{v} = \mathbf{0}$ $\det(A - \lambda I) = 0$ $\det \begin{pmatrix} 1-\lambda & 1\\ 4 & 1-\lambda \end{pmatrix} = 0$ $(1-\lambda)^2 - 4 = 0$ $(\lambda^2 - 2\lambda - 3 = 0)$ $\lambda = 1 \pm 2 = -1, 3$

- Find eigenvalues and eigenvectors of $A = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$.
- Looking for values λ and vectors \mathbf{v} for which $A\mathbf{v} = \lambda \mathbf{v}$.

$$A\mathbf{v} - \lambda \mathbf{v} = \mathbf{0} \qquad \qquad \mathbf{i} \quad \lambda_1 = -1$$

 $(A - \lambda I)\mathbf{v} = \mathbf{0}$ $\det(A - \lambda I) = 0$ $\det\begin{pmatrix}1 - \lambda & 1\\ 4 & 1 - \lambda\end{pmatrix} = 0$ $(1 - \lambda)^2 - 4 = 0$ $(\lambda^2 - 2\lambda - 3 = 0)$ $\lambda = 1 \pm 2 = -1, 3$

- Find eigenvalues and eigenvectors of $A = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$.
- Looking for values λ and vectors \mathbf{v} for which $A\mathbf{v} = \lambda \mathbf{v}$.
 - $\mathcal{O} \ \lambda_1 = -1$ $A\mathbf{v} - \lambda \mathbf{v} = \mathbf{0}$ $(A+I)\mathbf{v_1} = \begin{pmatrix} 2 & 1\\ 4 & 2 \end{pmatrix} \mathbf{v_1} = 0$ $(A - \lambda I)\mathbf{v} = \mathbf{0}$ $\det(A - \lambda I) = 0$ $\begin{pmatrix} 2 & 1 \\ 4 & 2 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 \\ 0 & 0 \end{pmatrix}$ $\det \begin{pmatrix} 1-\lambda & 1\\ 4 & 1-\lambda \end{pmatrix} = 0$ $2v_1 + v_2 = 0$ $(1-\lambda)^2 - 4 = 0$ $(\lambda^2 - 2\lambda - 3 = 0)$ $\mathbf{v_1} = \begin{pmatrix} 1 \\ -2 \end{pmatrix}$ $\lambda = 1 \pm 2 = -1, 3$

(and any scalar multiple of it) ¹¹

- Find eigenvalues and eigenvectors of $A = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$.
- Looking for values λ and vectors \mathbf{v} for which $A\mathbf{v} = \lambda \mathbf{v}$.
 - $\lambda_1 = -1$ $A\mathbf{v} - \lambda \mathbf{v} = \mathbf{0}$ $\mathbf{v_1} = \begin{pmatrix} 1\\ -2 \end{pmatrix}$ $(A - \lambda I)\mathbf{v} = \mathbf{0}$ $\det(A - \lambda I) = 0$ $\lambda_2 = 3$ $\mathbf{v_2} = \begin{pmatrix} 1\\ 2 \end{pmatrix}$ $\det \begin{pmatrix} 1-\lambda & 1\\ 4 & 1-\lambda \end{pmatrix} = 0$ $(1-\lambda)^2 - 4 = 0$ $(\lambda^2 - 2\lambda - 3 = 0)$ $\lambda = 1 \pm 2 = -1, 3$

- Find eigenvalues and eigenvectors of $A = \begin{pmatrix} 1 & 1 \\ 4 & 1 \end{pmatrix}$.
- Looking for values λ and vectors \mathbf{v} for which $A\mathbf{v} = \lambda \mathbf{v}$.

$$\mathbf{v}_1 = -1$$
$$\mathbf{v}_1 = \begin{pmatrix} 1\\ -2 \end{pmatrix}$$

$$\lambda_2 = 3$$
$$\mathbf{v_2} = \begin{pmatrix} 1\\ 2 \end{pmatrix}$$

 How do we use eigenvalues and eigenvectors to construct a general solution?