Today

- Fourier series calculations

Fourier series

- Calculate the coefficients of the Fourier series of a function:

$$
\begin{array}{rlr}
f_{F S}(x)=\frac{a_{0}}{2}+a_{1} \cos \left(\frac{\pi x}{L}\right)+a_{2} \cos \left(\frac{2 \pi x}{L}\right)+\cdots & & v_{0}(x)=1 \\
& +b_{1} \sin \left(\frac{\pi x}{L}\right)+b_{2} \sin \left(\frac{2 \pi x}{L}\right)+\cdots & v_{n}(x)=\cos \left(\frac{n \pi x}{L}\right) \\
f_{F S}(x)=\frac{a_{0}}{2} v_{0}(x)+a_{1} v_{1}(x)+a_{2} v_{2}(x)+\cdots & & w_{n}(x)=\sin \left(\frac{n \pi x}{L}\right) \\
& +b_{1} w_{1}(x)+b_{2} w_{2}(x)+\cdots &
\end{array}
$$

$$
=a_{n} v_{n}(x) \circ v_{n}(x)=a_{n} L
$$

$$
a_{n}=\frac{1}{L} \int_{-L}^{L} f_{F S}(x) \cos \left(\frac{n \pi x}{L}\right) d x
$$

Fourier series

－Calculate the coefficients．

$$
\begin{aligned}
& f_{F S}(x)=\frac{a_{0}}{2}+a_{1} \cos \left(\frac{\pi x}{L}\right)+a_{2} \cos \left(\frac{2 \pi x}{L}\right)+\cdots \\
& +b_{1} \sin \left(\frac{\pi x}{L}\right)+b_{2} \sin \left(\frac{2 \pi x}{L}\right)+\cdots \\
& a_{\mathrm{a}}= \\
& \text { 解 (A) } 0 \\
& \text { (官) } \frac{12}{\sqrt{\pi} \pi}
\end{aligned}
$$

$$
\begin{aligned}
& a_{0}=\int_{-1}^{1} f(x) d x \\
& f_{F S}(x)=\frac{4}{\pi} \sin \left(\frac{\pi x}{L}\right)+\frac{4}{3 \pi} \sin \left(\frac{3 \pi x}{L}\right)+\frac{4}{5 \pi} \sin \left(\frac{5 \pi x}{L}\right)+\cdots \\
& \text { https://www.desmos.com/calculator/tlvtikmioy } \\
& \begin{array}{l}
\text { (C) undefined } \\
\text { (C) } \frac{1 n \pi}{\text { (D) }}
\end{array} \\
& \hat{ش}(\mathrm{D}) \frac{2\left(\overline{-1}-(-1)^{n}\right)}{n \pi} \\
& \text { Does } f(x)=f_{F S}(x) \text { for all } x \text { ? } \\
& \text { Problems at jumps! } x=-1,0,1
\end{aligned}
$$

Fourier series

- Theorem Suppose f anf f^{\prime} are piecewise continuous on [-L,L] and periodic beyond that interval. Then $f(x)=f_{F s}(x)$ at all points at which f is continuous. Furthermore, at points of discontinuity, $\mathrm{fFs}^{(\mathrm{X}} \mathrm{X}$) takes the value of the midpoint of the jump. That is,

$$
f_{F S}(x)=\frac{f\left(x^{+}\right)+f\left(x^{-}\right)}{2}
$$

Fourier series

- Suppose you have a function on the interval [0,L] and you would like to represent it using a Fourier series. Need to make it periodic somehow. There are a few options for how to do this.

1. Use the function given on $[0, L]$ and extend it outside that interval so that it has period L .

$$
\begin{array}{r}
f_{F S}(x)=\frac{a_{0}}{2}+a_{1} \cos \left(\frac{\pi x}{L}\right)+a_{2} \cos \left(\frac{2 \pi x}{L}\right)+\cdots \\
\\
+b_{1} \sin \left(\frac{\pi x}{L}\right)+b_{2} \sin \left(\frac{2 \pi x}{L}\right)+\cdots
\end{array}
$$

- Is this extension even? odd? Neither!

Fourier series

- Suppose you have a function on the interval [0,L] and you would like to represent it using a Fourier series. Need to make it periodic somehow. There are a few options for how to do this.

1. Use the function given on $[0, L]$ and extend it outside that interval so that it has period L .
2. Reflect it about y-axis first, then extend with period 2 L .

- Is this extension even? odd? Even!

Fourier series

- Suppose you have a function on the interval [0,L] and you would like to represent it using a Fourier series. Need to make it periodic somehow. There are a few options for how to do this.

1. Use the function given on $[0, L]$ and extend it outside that interval so that it has period L .
2. Reflect it about y-axis first, then extend with period 2 L .
3. Rotate it about origin, then extend with period 2 L .

Examples

Periodic extension

Odd periodic extension

Even periodic extension

