Today

- Introduction to systems of equations
- Direction fields
- Eigenvalues and eigenvectors
- Finding the general solution (distinct e-value case)

Introduction to systems of equations

Introduction to systems of equations

- So far, we've only dealt with equations with one unknown function. Sometimes, we'll be interested in more than one unknown function.

Introduction to systems of equations

- So far, we've only dealt with equations with one unknown function. Sometimes, we'll be interested in more than one unknown function.
- Examples:

Introduction to systems of equations

- So far, we've only dealt with equations with one unknown function. Sometimes, we'll be interested in more than one unknown function.
- Examples:
- position of object in one dimensional space in terms of x, v :

Introduction to systems of equations

- So far, we've only dealt with equations with one unknown function. Sometimes, we'll be interested in more than one unknown function.
- Examples:
- position of object in one dimensional space in terms of x, v :

$$
m x^{\prime \prime}+\gamma x^{\prime}+k x=0
$$

Introduction to systems of equations

- So far, we've only dealt with equations with one unknown function. Sometimes, we'll be interested in more than one unknown function.
- Examples:
- position of object in one dimensional space in terms of x, v :

$$
\begin{aligned}
& m x^{\prime \prime}+\gamma x^{\prime}+k x=0 \\
& x^{\prime}=v
\end{aligned}
$$

Introduction to systems of equations

- So far, we've only dealt with equations with one unknown function. Sometimes, we'll be interested in more than one unknown function.
- Examples:
- position of object in one dimensional space in terms of x, v :

$$
\begin{aligned}
& m x^{\prime \prime}+\gamma x^{\prime}+k x=0 \\
& x^{\prime}=v \\
& x^{\prime \prime}=v^{\prime}
\end{aligned}
$$

Introduction to systems of equations

- So far, we've only dealt with equations with one unknown function. Sometimes, we'll be interested in more than one unknown function.
- Examples:
- position of object in one dimensional space in terms of x, v :

$$
\begin{aligned}
& m x^{\prime \prime}+\gamma x^{\prime}+k x=0 \\
& x^{\prime}=v \\
& x^{\prime \prime}=v^{\prime}
\end{aligned}
$$

Introduction to systems of equations

- So far, we've only dealt with equations with one unknown function. Sometimes, we'll be interested in more than one unknown function.
- Examples:
- position of object in one dimensional space in terms of x, v :

$$
\begin{aligned}
& m x^{\prime \prime}+\gamma x^{\prime}+k x=0 \rightarrow m v^{\prime}+\gamma v+k x=0 \\
& x^{\prime}=v \\
& x^{\prime \prime}=v^{\prime}
\end{aligned}
$$

Introduction to systems of equations

- So far, we've only dealt with equations with one unknown function. Sometimes, we'll be interested in more than one unknown function.
- Examples:
- position of object in one dimensional space in terms of x, v :

$$
\begin{array}{lr}
m x^{\prime \prime}+\gamma x^{\prime}+k x=0 \rightarrow m v^{\prime}+\gamma v+k x=0 \\
x^{\prime}=v \\
x^{\prime \prime}=v^{\prime} & v^{\prime}=-\frac{\gamma}{m} v-\frac{k}{m} x
\end{array}
$$

Introduction to systems of equations

- So far, we've only dealt with equations with one unknown function. Sometimes, we'll be interested in more than one unknown function.
- Examples:
- position of object in one dimensional space in terms of x, v :

$$
\begin{aligned}
& m x^{\prime \prime}+\gamma x^{\prime}+k x=0 \rightarrow m v^{\prime}+\gamma v+k x=0 \\
& x^{\prime}=v \\
& x^{\prime \prime}=v^{\prime} \\
& x^{\prime}=\quad v^{\prime}=-\frac{\gamma}{m} v-\frac{k}{m} x \\
& v^{\prime}=-\frac{k}{m} x-\frac{\gamma}{m} v
\end{aligned}
$$

Introduction to systems of equations

- So far, we've only dealt with equations with one unknown function. Sometimes, we'll be interested in more than one unknown function.
- Examples:
- position of object in one dimensional space in terms of x, v :

$$
\begin{array}{ll}
m x^{\prime \prime}+\gamma x^{\prime}+k x=0 & \rightarrow m v^{\prime}+\gamma v+k x=0 \\
x^{\prime}=v \\
x^{\prime \prime}=v^{\prime} \\
x^{\prime}= & v^{\prime}=-\frac{\gamma}{m} v-\frac{k}{m} x \\
v^{\prime}=-\frac{k}{m} x-\frac{\gamma}{m} v & \binom{x}{v}^{\prime}=\left(\begin{array}{cc}
0 & 1 \\
-\frac{k}{m} & -\frac{\gamma}{m}
\end{array}\right)\binom{x}{v}
\end{array}
$$

Introduction to systems of equations

- So far, we've only dealt with equations with one unknown function. Sometimes, we'll be interested in more than one unknown function.
- Examples:
- position of object in one dimensional space in terms of x, v.

Introduction to systems of equations

- So far, we've only dealt with equations with one unknown function. Sometimes, we'll be interested in more than one unknown function.
- Examples:
- position of object in one dimensional space in terms of x, v.
- position of an object in a plane (x, y coordinates) or three dimensional space (x, y, z coordinates).

Introduction to systems of equations

- So far, we've only dealt with equations with one unknown function. Sometimes, we'll be interested in more than one unknown function.
- Examples:
- position of object in one dimensional space in terms of x, v.
- position of an object in a plane (x, y coordinates) or three dimensional space (x, y, z coordinates).
- positions of multiple objects (two or more masses linked by springs).

Introduction to systems of equations

- So far, we've only dealt with equations with one unknown function. Sometimes, we'll be interested in more than one unknown function.
- Examples:
- position of object in one dimensional space in terms of x, v.
- position of an object in a plane (x, y coordinates) or three dimensional space (x, y, z coordinates).
- positions of multiple objects (two or more masses linked by springs).
- concentration in connected chambers (saltwater in multiple tanks, intracellular and extracellular, blood stream and organs).

Introduction to systems of equations

- So far, we've only dealt with equations with one unknown function. Sometimes, we'll be interested in more than one unknown function.
- Examples:
- position of object in one dimensional space in terms of x, v.
- position of an object in a plane (x, y coordinates) or three dimensional space (x, y, z coordinates).
- positions of multiple objects (two or more masses linked by springs).
- concentration in connected chambers (saltwater in multiple tanks, intracellular and extracellular, blood stream and organs).
- populations of two species (e.g. predator and prey).

Introduction to systems of equations

- As with single equations, we have linear and nonlinear systems:

$$
\begin{array}{ll}
\frac{d x}{d t}=t^{2} x-y+\cos (2 t) & \frac{d x}{d t}=t^{2} x-y^{2} \\
\frac{d y}{d t}=x+4 \sin (t) y+t^{3} & \frac{d y}{d t}=\sqrt{x}-y
\end{array}
$$

- And we also have nonhomogeneous and homogeneous systems.

$$
\begin{array}{ll}
\frac{d x}{d t}=t^{2} x-y+\cos (2 t) & \frac{d x}{d t}=t^{2} x-y \\
\frac{d y}{d t}=x+4 \sin (t) y+t^{3} & \frac{d y}{d t}=x+4 \sin (t) y
\end{array}
$$

Introduction to systems of equations

- As with single equations, we have linear and nonlinear systems:

$$
\begin{array}{ll}
\frac{d x}{d t}=t^{2} x-y+\cos (2 t) & \frac{d x}{d t}=t^{2} x-y^{2} \\
\frac{d y}{d t}=x+4 \sin (t) y+t^{3} & \frac{d y}{d t}=\sqrt{x}-y
\end{array}
$$

- And we also have nonhomogeneous and homogeneous systems.

$$
\begin{array}{ll}
\frac{d x}{d t}=t^{2} x-y+\cos (2 t) & \frac{d x}{d t}=t^{2} x-y \\
\frac{d y}{d t}=x+4 \sin (t) y+t^{3} & \frac{d y}{d t}=x+4 \sin (t) y
\end{array}
$$

Introduction to systems of equations

- As with single equations, we have linear and nonlinear systems:

$$
\begin{array}{ll}
\frac{d x}{d t}=t^{2} x-y+\cos (2 t) & \begin{array}{l}
\frac{d x}{d t}=t^{2} x-y^{2} \\
\frac{d y}{d t}=x+4 \sin \left(t y+t^{3}\right.
\end{array} \\
\frac{d y}{d t}=\sqrt{x}-y
\end{array}
$$

- And we also have nonhomogeneous and homogeneous systems.

$$
\begin{array}{ll}
\frac{d x}{d t}=t^{2} x-y+\cos (2 t) & \frac{d x}{d t}=t^{2} x-y \\
\frac{d y}{d t}=x+4 \sin (t) y+t^{3} & \frac{d y}{d t}=x+4 \sin (t) y
\end{array}
$$

Introduction to systems of equations

- As with single equations, we have linear and nonlinear systems:

$$
\begin{aligned}
& \left(\frac{d x}{d t}=t-x+\cos (2 t)\right. \\
& \left(\frac{d y}{d t}=x+4 \sin \left(t y+t^{3}\right.\right.
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d x}{d t}=t^{2} x-y^{2} \\
& \frac{d y}{d t}=\sqrt{x}-y
\end{aligned}
$$

- And we also have nonhomogeneous and homogeneous systems.

$$
\begin{array}{ll}
\frac{d x}{d t}=t^{2} x-y+\cos (2 t) & \frac{d x}{d t}=t^{2} x-y \\
\frac{d y}{d t}=x+4 \sin (t) y+t^{3} & \frac{d y}{d t}=x+4 \sin (t) y
\end{array}
$$

Introduction to systems of equations

- As with single equations, we have linear and nonlinear systems:

$$
\begin{aligned}
& \left(\frac{d x}{d t}\right)=t^{2} x-y+\cos (2 t) \\
& \left(\frac{d y}{d t}\right)=x+4 \sin \left(t y+t^{3}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \frac{d x}{d t}=t^{2} x-y^{2} \\
& \frac{d y}{d t}=\sqrt{x}-y
\end{aligned}
$$

- And we also have nonhomogeneous and homogeneous systems.

$$
\begin{array}{ll}
\frac{d x}{d t}=t^{2} x-y+\cos (2 t) & \frac{d x}{d t}=t^{2} x-y \\
\frac{d y}{d t}=x+4 \sin (t) y+t^{3} & \frac{d y}{d t}=x+4 \sin (t) y
\end{array}
$$

Introduction to systems of equations

- As with single equations, we have linear and nonlinear systems:

$$
\begin{array}{ll}
\frac{d x}{d t}=t^{2} x-y+\cos (2 t) & \frac{d x}{d t}=t^{2} x-y^{2} \\
\frac{d y}{d t}=x+4 \sin (t) y+t^{3} & \frac{d y}{d t}=\sqrt{x}-y
\end{array}
$$

- And we also have nonhomogeneous and homogeneous systems.

$$
\begin{array}{ll}
\frac{d x}{d t}=t^{2} x-y \notin \cos (2 t) & \frac{d x}{d t}=t^{2} x-y \\
\frac{d y}{d t}=x+4 \sin (t) y+t^{3} & \frac{d y}{d t}=x+4 \sin (t) y
\end{array}
$$

Introduction to systems of equations

- As with single equations, we have linear and nonlinear systems:

$$
\begin{array}{ll}
\frac{d x}{d t}=t^{2} x-y+\cos (2 t) & \frac{d x}{d t}=t^{2} x-y^{2} \\
\frac{d y}{d t}=x+4 \sin (t) y+t^{3} & \frac{d y}{d t}=\sqrt{x}-y
\end{array}
$$

- And we also have nonhomogeneous and homogeneous systems.

$$
\begin{array}{ll}
\frac{d x}{d t}=t^{2} x-y \leftarrow \cos (2 t) & \frac{d x}{d t}=t^{2} x-y \\
\frac{d y}{d t}=x+4 \sin (t) y+t^{3} & \frac{d y}{d t}=x+4 \sin (t) y
\end{array}
$$

Introduction to systems of equations

- Any linear system can be written in matrix form:

$$
\begin{aligned}
& \frac{d x}{d t}=t^{2} x-y+\cos (2 t) \\
& \frac{d y}{d t}=x+4 \sin (t) y+t^{3}
\end{aligned}
$$

Introduction to systems of equations

- Any linear system can be written in matrix form:

$$
\begin{gathered}
\frac{d x}{d t}=t^{2} x-y+\cos (2 t) \\
\frac{d y}{d t}=x+4 \sin (t) y+t^{3} \\
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{cc}
t^{2} & -1 \\
1 & 4 \sin (t)
\end{array}\right)\binom{x}{y}+\binom{\cos (2 t)}{t^{3}}
\end{gathered}
$$

Introduction to systems of equations

- Any linear system can be written in matrix form:

$$
\begin{gathered}
\frac{d x}{d t}=t^{2} x-y+\cos (2 t) \\
\frac{d y}{d t}=x+4 \sin (t) y+t^{3} \\
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{cc}
t^{2} & -1 \\
1 & 4 \sin (t)
\end{array}\right)\binom{x}{y}+\binom{\cos (2 t)}{t^{3}} \\
L\left[\binom{x}{y}\right]=\frac{d}{d t}\binom{x}{y}-\left(\begin{array}{cc}
t^{2} & -1 \\
1 & 4 \sin (t)
\end{array}\right)\binom{x}{y}=\binom{\cos (2 t)}{t^{3}}
\end{gathered}
$$

Introduction to systems of equations

- Any linear system can be written in matrix form:

$$
\begin{gathered}
\frac{d x}{d t}=t^{2} x-y+\cos (2 t) \\
\frac{d y}{d t}=x+4 \sin (t) y+t^{3} \\
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{cc}
t^{2} & -1 \\
1 & 4 \sin (t)
\end{array}\right)\binom{x}{y}+\binom{\cos (2 t)}{t^{3}}
\end{gathered}
$$

- We'll focus on the case in which the matrix has constant entries. And homogeneous. For example,

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y}
$$

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y}
$$

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

- Think of the unknown functions as coordinates $(x(t), y(t))$ of an object in the plane.

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

- Think of the unknown functions as coordinates $(x(t), y(t))$ of an object in the plane.
- $A \mathbf{x}$ gives the velocity vector of the object located at \mathbf{x}.

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

- Think of the unknown functions as coordinates $(x(t), y(t))$ of an object in the plane.
- $A \mathbf{x}$ gives the velocity vector of the object located at \mathbf{x}.

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

- Think of the unknown functions as coordinates $(x(t), y(t))$ of an object in the plane.
- $A \mathbf{x}$ gives the velocity vector of the object located at \mathbf{x}.

$$
\mathbf{x}=\binom{2}{1}
$$

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

- Think of the unknown functions as coordinates $(x(t), y(t))$ of an object in the plane.
- $A \mathbf{x}$ gives the velocity vector of the object located at \mathbf{x}.

$$
\mathbf{x}=\binom{2}{1}
$$

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

- Think of the unknown functions as coordinates $(x(t), y(t))$ of an object in the plane.
- $A \mathbf{x}$ gives the velocity vector of the object located at \mathbf{x}.

$$
\begin{aligned}
& \mathbf{x}=\binom{2}{1} \\
& A \mathbf{x}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{2}{1}=\binom{3}{9}
\end{aligned}
$$

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

- Think of the unknown functions as coordinates $(x(t), y(t))$ of an object in the plane.
- $A \mathbf{x}$ gives the velocity vector of the object located at \mathbf{x}.

$$
\begin{aligned}
& \mathbf{x}=\binom{2}{1} \\
& A \mathbf{x}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{2}{1}=\binom{3}{9}
\end{aligned}
$$

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

- Think of the unknown functions as coordinates $(x(t), y(t))$ of an object in the plane.
- $A \mathbf{x}$ gives the velocity vector of the object located at \mathbf{x}.

$$
\mathbf{x}=\binom{1}{1}
$$

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

- Think of the unknown functions as coordinates $(x(t), y(t))$ of an object in the plane.
- $A \mathbf{x}$ gives the velocity vector of the object located at \mathbf{x}.

$$
\begin{aligned}
& \mathbf{x}=\binom{1}{1} \\
& A \mathbf{x}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{1}{1}=\binom{2}{5}
\end{aligned}
$$

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

- Think of the unknown functions as coordinates $(x(t), y(t))$ of an object in the plane.
- $A \mathbf{x}$ gives the velocity vector of the object located at \mathbf{x}.

$$
\begin{aligned}
& \mathbf{x}=\binom{1}{1} \\
& A \mathbf{x}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{1}{1}=\binom{2}{5}
\end{aligned}
$$

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

- Think of the unknown functions as coordinates $(x(t), y(t))$ of an object in the plane.
- $A \mathbf{x}$ gives the velocity vector of the object located at \mathbf{x}.

$$
\begin{aligned}
& \mathbf{x}=\binom{1}{1} \\
& A \mathbf{x}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{1}{1}=\binom{2}{5}
\end{aligned}
$$

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

- Think of the unknown functions as coordinates $(x(t), y(t))$ of an object in the plane.
- $A \mathbf{x}$ gives the velocity vector of the object located at \mathbf{x}.

$$
\begin{aligned}
& \mathbf{x}=\binom{1}{1} \\
& A \mathbf{x}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{1}{1}=\binom{2}{5}
\end{aligned}
$$

- Solutions must follow the arrows.

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

- Think of the unknown functions as coordinates $(x(t), y(t))$ of an object in the plane.
- $A \mathbf{x}$ gives the velocity vector of the object located at \mathbf{x}.

$$
\begin{aligned}
& \mathbf{x}=\binom{1}{1} \\
& A \mathbf{x}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{1}{1}=\binom{2}{5}
\end{aligned}
$$

- Solutions must follow the arrows.

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

- Think of the unknown functions as coordinates $(x(t), y(t))$ of an object in the plane.
- $A \mathbf{x}$ gives the velocity vector of the object located at \mathbf{x}.

$$
\begin{aligned}
& \mathbf{x}=\binom{1}{1} \\
& A \mathbf{x}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{1}{1}=\binom{2}{5}
\end{aligned}
$$

- Solutions must follow the arrows.

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

- Think of the unknown functions as coordinates $(x(t), y(t))$ of an object in the plane.
- $A \mathbf{x}$ gives the velocity vector of the object located at \mathbf{x}.

$$
\begin{aligned}
& \mathbf{x}=\binom{1}{1} \\
& A \mathbf{x}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{1}{1}=\binom{2}{5}
\end{aligned}
$$

- Solutions must follow the arrows.

Introduction to systems of equations

- Geometric interpretation - direction fields.

$$
\frac{d}{d t}\binom{x}{y}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{x}{y} \quad \text { or } \quad \mathbf{x}^{\prime}=A \mathbf{x}
$$

- Think of the unknown functions as coordinates $(x(t), y(t))$ of an object in the plane.
- $A \mathbf{x}$ gives the velocity vector of the object located at \mathbf{x}.

$$
\begin{aligned}
& \mathbf{x}=\binom{1}{1} \\
& A \mathbf{x}=\left(\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right)\binom{1}{1}=\binom{2}{5}
\end{aligned}
$$

- Solutions must follow the arrows.

Introduction to systems of equations

- Which of the following equations matches the given direction field?
(A) $\mathbf{x}^{\prime}=\left(\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array}\right)\binom{x}{y}$
(B) $\mathbf{x}^{\prime}=\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)\binom{x}{y}$
(C) $\mathbf{x}^{\prime}=\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right)\binom{x}{y}$
(D) $\mathbf{x}^{\prime}=\left(\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right)\binom{x}{y}$
(E) Explain, please.
http://kevinmehall.net/p/equationexplorer/ vectorfield.htm|\#(x+y)i+(x-y))\%7C\%5B-10,10,-10,10\%5D${ }^{7}$

Introduction to systems of equations

- Which of the following equations matches the given direction field?

$$
\begin{aligned}
\text { (A) } \mathbf{x}^{\prime} & =\left(\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right)\binom{x}{y} \\
\text { (B) } \mathbf{x}^{\prime} & =\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)\binom{x}{y} \\
\text { (C) } \mathbf{x}^{\prime} & =\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)\binom{x}{y} \\
(\mathrm{D}) \mathbf{x}^{\prime} & =\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{x}{y}
\end{aligned}
$$

(E) Explain, please.

http://kevinmehall.net/p/equationexplorer/ vectorfield.htm|\#(x+y)i+(x-y))\%7C\%5B-10,10,-10,10\%5D${ }^{7}$

Introduction to systems of equations

- Which of the following equations matches the given direction field?

$$
\begin{aligned}
\text { (A) } \mathbf{x}^{\prime} & =\left(\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right)\binom{x}{y} \\
\text { (B) } \mathbf{x}^{\prime} & =\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)\binom{x}{y} \\
\text { (C) } \mathbf{x}^{\prime} & =\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)\binom{x}{y} \\
\hat{y}(\mathrm{D}) \mathbf{x}^{\prime} & =\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{x}{y}
\end{aligned}
$$

(E) Explain, please.

http://kevinmehall.net/p/equationexplorer/ vectorfield.html\#(x+y)i+(x-y)j\%7C\%5B-10,10,-10,10\%5D${ }^{7}$

Introduction to systems of equations

- Which of the following equations matches the given direction field?

$$
\begin{aligned}
\text { (A) } \mathbf{x}^{\prime} & =\left(\begin{array}{cc}
-1 & 1 \\
1 & 1
\end{array}\right)\binom{x}{y} \\
\text { (B) } \mathbf{x}^{\prime} & =\left(\begin{array}{cc}
1 & -1 \\
1 & 1
\end{array}\right)\binom{x}{y} \\
\text { (C) } \mathbf{x}^{\prime} & =\left(\begin{array}{cc}
1 & 1 \\
-1 & 1
\end{array}\right)\binom{x}{y} \\
(\mathrm{D}) \mathbf{x}^{\prime} & =\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\binom{x}{y}
\end{aligned}
$$

(E) Explain, please.

http://kevinmehall.net/p/equationexplorer/ vectorfield.htm|\#(x+y)i+(x-y))\%7C\%5B-10,10,-10,10\%5D${ }^{7}$

Introduction to systems of equations

- You should see two "special" directions.
- What are they?
- Directions along which the velocity vector is parallel to the position vector.
- That is,

Introduction to systems of equations

- You should see two "special" directions.
- What are they?
- Directions along which the velocity vector is parallel to the position vector.
- That is,

Introduction to systems of equations

- You should see two "special" directions.
- What are they?
- Directions along which the velocity vector is parallel to the position vector.
- That is,

Introduction to systems of equations

- You should see two "special" directions.
- What are they?
- Directions along which the velocity vector is parallel to the position vector.
- That is,

Introduction to systems of equations

- You should see two "special" directions.
- What are they?

Introduction to systems of equations

- You should see two "special" directions.
- What are they?
- Directions along which the velocity vector is parallel to the position vector.

Introduction to systems of equations

- You should see two "special" directions.
- What are they?
- Directions along which the velocity vector is parallel to the position vector.
- That is, $A \mathbf{v}=\lambda \mathbf{v}$.

Introduction to systems of equations

- You should see two "special" directions.
- What are they?
- Directions along which the velocity vector is parallel to the position vector.
- That is, $A \mathbf{v}=\lambda \mathbf{v}$.

Introduction to systems of equations

- You should see two "special" directions.
- What are they?
- Directions along which the velocity vector is parallel to the position vector.
- That is, $A \mathbf{v}=\lambda \mathbf{v}$.

Introduction to systems of equations

- You should see two "special" directions.
- What are they?
- Directions along which the velocity vector is parallel to the position vector.
- That is, $A \mathbf{v}=\lambda \mathbf{v}$.

$$
\begin{aligned}
\lambda_{1} & =\sqrt{2} \\
\mathbf{v}_{\mathbf{1}} & =\binom{1}{\sqrt{2}-1}
\end{aligned}
$$

Introduction to systems of equations

- You should see two "special" directions.
- What are they?
- Directions along which the velocity vector is parallel to the position vector.
- That is, $A \mathbf{v}=\lambda \mathbf{v}$.

Introduction to systems of equations

- You should see two "special" directions.
- What are they?
- Directions along which the velocity vector is parallel to the position vector.
- That is, $A \mathbf{v}=\lambda \mathbf{v}$.

Introduction to systems of equations

- You should see two "special" directions.
- What are they?
- Directions along which the velocity vector is parallel to the position vector.
- That is, $A \mathbf{v}=\lambda \mathbf{v}$.

$$
\begin{aligned}
\lambda_{2} & =-\sqrt{2} \\
\mathbf{v}_{\mathbf{2}} & =\binom{1-\sqrt{2}}{1}
\end{aligned}
$$

