
Today

• Non-homogeneous systems of ODEs

• Non-homogeneous two-tank example

• Intro to Laplace transforms
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Nonhomogeneous system of DEs

• How do you solve the equation

• Define the linear operator

• The equation above can be written as

• As for 2nd order equations, solve homogeneous eqn first,

•  then Method of Undetermined Coefficients...

x�(t) = Ax(t) + b

L[x] = x�(t)−Ax(t)

L[x] = b

?

L[x] = 0
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Nonhomogeneous system of DEs

• For the equation,

which of the following is a suitable guess (in the sense of MUC)?

x�(t) = Ax(t) + b

(A) 

(B) 

(C) 

(D) 

(E)  Huh?

xp = cb

xp = v

xp = tv

xp = tu + v

-- works only when b happens to be an eigenvector associated 
with a non-zero eigenvalue; not really worth trying. 

-- works when b is in the range of A (which is to say often so try 
this first).

-- works when (B) doesn’t and b happens to be in the nullspace of A.

-- works when (B) and (C) don’t with one exception but is 
beyond the scope of this course.



Nonhomogeneous system of DEs - example

• Salt water flows into a tank holding 10 L of water at a rate of 1 L/min 
with a concentration of 200 g/L. The well-mixed solution flows from that 
tank into a tank holding 5 L through a pipe at 3 L/min. Another pipe 
takes the solution in the second tank back into the first at a rate of 2 L/
min. Finally, solution drains out of the second tank at a rate of 1 L/min.

•  Write down a system of equations in matrix form for the mass of salt in 
each tank.
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• Salt water flows into a tank holding 10 L of water at a rate of 1 L/min 
with a concentration of 200 g/L. The well-mixed solution flows from that 
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Nonhomogeneous case - example

• A “Method of undetermined coefficients” similar to what we saw for 
second order equations can be used for systems. 

• For this course, I’ll only test you on constant nonhomogeneous terms 
(like the previous example).
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• We know how to solve                                              when          is 
polynomial, exponential, trig.

• In applications,          is often “piece-wise continuous” meaning that it 
consists of a finite number of pieces with jump discontinuities in 
between. For example,

• These can be handled by previous techniques (modified) but it isn’t 
pretty (solve from t=0 to t=10, use y(10) as the IC for a new problem 
starting at t=10).
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0 t ≥ 10.
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Laplace transforms - intro (6.1)

• Motivation for Laplace transforms - example RLC circuit

• Resistor, inductor and capacitor in series

• If v(t) comes from radio waves then                                   and the 
circuit is called a radio receiver.

• For                                                   , the circuit has a switch that gets 

flipped at t=10. 

I ��(t) +
R

L
I �(t) +

1
LC

I(t) = v(t)

v(t) = A cos(ωt)

v(t) =
�

1 0 < t < 10
0 t ≥ 10
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Laplace transforms - intro (6.1)

• Instead of not-so-pretty techniques, we use Laplace transforms.

• Idea:

Unknown y(t) that 
satisfies some ODE

Found y(t)
solve ODE

Found Y(s)
solve algebraic eqUnknown Y(s) that 

satisfies an algebraic 
equation

Transform y(t) 
and the ODE

Invert the 
transform

• Laplace transform of y(t): L{y(t)} = Y (s) =
� ∞

0
e−sty(t) dt
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