Today

- Non-homogeneous systems of ODEs
- Non-homogeneous two-tank example
- Intro to Laplace transforms

• How do you solve the equation

$$\mathbf{x}'(\mathbf{t}) = A\mathbf{x}(\mathbf{t}) + \mathbf{b}$$
 ?

• How do you solve the equation

$$\mathbf{x}'(\mathbf{t}) = A\mathbf{x}(\mathbf{t}) + \mathbf{b} ?$$

• Define the linear operator

$$L[\mathbf{x}] = \mathbf{x}'(\mathbf{t}) - A\mathbf{x}(\mathbf{t})$$

• How do you solve the equation

$$\mathbf{x}'(\mathbf{t}) = A\mathbf{x}(\mathbf{t}) + \mathbf{b} ?$$

• Define the linear operator

$$L[\mathbf{x}] = \mathbf{x}'(\mathbf{t}) - A\mathbf{x}(\mathbf{t})$$

• The equation above can be written as

$$L[\mathbf{x}] = \mathbf{b}$$

• How do you solve the equation

$$\mathbf{x}'(\mathbf{t}) = A\mathbf{x}(\mathbf{t}) + \mathbf{b}$$
 ?

• Define the linear operator

$$L[\mathbf{x}] = \mathbf{x}'(\mathbf{t}) - A\mathbf{x}(\mathbf{t})$$

• The equation above can be written as

$$L[\mathbf{x}] = \mathbf{b}$$

• As for 2nd order equations, solve homogeneous eqn first,

$$L[\mathbf{x}] = \mathbf{0}$$

• How do you solve the equation

$$\mathbf{x}'(\mathbf{t}) = A\mathbf{x}(\mathbf{t}) + \mathbf{b}$$
 ?

• Define the linear operator

$$L[\mathbf{x}] = \mathbf{x}'(\mathbf{t}) - A\mathbf{x}(\mathbf{t})$$

• The equation above can be written as

$$L[\mathbf{x}] = \mathbf{b}$$

• As for 2nd order equations, solve homogeneous eqn first,

$$L[\mathbf{x}] = \mathbf{0}$$

• then Method of Undetermined Coefficients...

• For the equation,

$$\mathbf{x}'(\mathbf{t}) = A\mathbf{x}(\mathbf{t}) + \mathbf{b}$$

which of the following is a suitable guess (in the sense of MUC)?

(A)
$$\mathbf{x}_{\mathbf{p}} = c\mathbf{b}$$

(B) $\mathbf{x}_{\mathbf{p}} = \mathbf{v}$
(C) $\mathbf{x}_{\mathbf{p}} = t\mathbf{v}$
(D) $\mathbf{x}_{\mathbf{p}} = t\mathbf{u} + \mathbf{v}$

• For the equation,

$$\mathbf{x}'(\mathbf{t}) = A\mathbf{x}(\mathbf{t}) + \mathbf{b}$$

which of the following is a suitable guess (in the sense of MUC)?

- (A) $\mathbf{x_p} = c\mathbf{b}$ -- works only when **b** happens to be an eigenvector associated with a non-zero eigenvalue; not really worth trying.
- (B) $\mathbf{x_p} = \mathbf{v}$
- (C) $\mathbf{x_p} = t\mathbf{v}$
- (D) $\mathbf{x_p} = t\mathbf{u} + \mathbf{v}$

• For the equation,

$$\mathbf{x}'(\mathbf{t}) = A\mathbf{x}(\mathbf{t}) + \mathbf{b}$$

which of the following is a suitable guess (in the sense of MUC)?

- (A) $\mathbf{x_p} = c\mathbf{b}$ -- works only when **b** happens to be an eigenvector associated with a non-zero eigenvalue; not really worth trying.
- (B) $\mathbf{x_p} = \mathbf{v}$ -- works when **b** is in the range of A (which is to say often so try this first).

(C) $\mathbf{x_p} = t\mathbf{v}$

(D) $\mathbf{x}_{\mathbf{p}} = t\mathbf{u} + \mathbf{v}$

• For the equation,

$$\mathbf{x}'(\mathbf{t}) = A\mathbf{x}(\mathbf{t}) + \mathbf{b}$$

which of the following is a suitable guess (in the sense of MUC)?

- (A) $\mathbf{x_p} = c\mathbf{b}$ -- works only when **b** happens to be an eigenvector associated with a non-zero eigenvalue; not really worth trying.
- (B) $\mathbf{x_p} = \mathbf{v}$ -- works when **b** is in the range of A (which is to say often so try this first).
- (C) $\mathbf{x_p} = t\mathbf{v}$ -- works when (B) doesn't and **b** happens to be in the nullspace of A.

(D) $\mathbf{x}_{\mathbf{p}} = t\mathbf{u} + \mathbf{v}$

• For the equation,

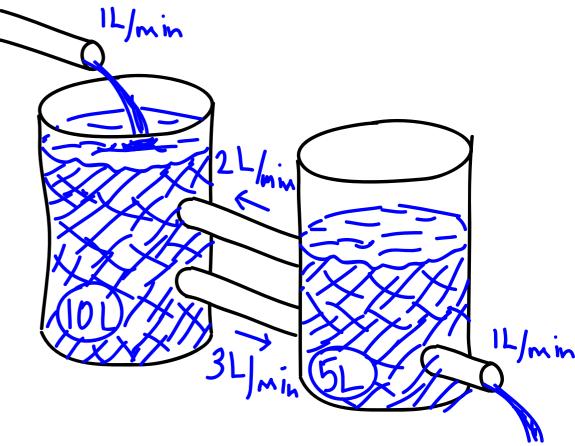
$$\mathbf{x}'(\mathbf{t}) = A\mathbf{x}(\mathbf{t}) + \mathbf{b}$$

which of the following is a suitable guess (in the sense of MUC)?

- (A) $\mathbf{x_p} = c\mathbf{b}$ -- works only when **b** happens to be an eigenvector associated with a non-zero eigenvalue; not really worth trying.
- (B) $\mathbf{x_p} = \mathbf{v}$ -- works when **b** is in the range of A (which is to say often so try this first).
- (C) $\mathbf{x_p} = t\mathbf{v}$ -- works when (B) doesn't and **b** happens to be in the nullspace of A.
- (D) $\mathbf{x_p} = t\mathbf{u} + \mathbf{v}$ -- works when (B) and (C) don't with one exception but is beyond the scope of this course.

Nonhomogeneous system of DEs - example

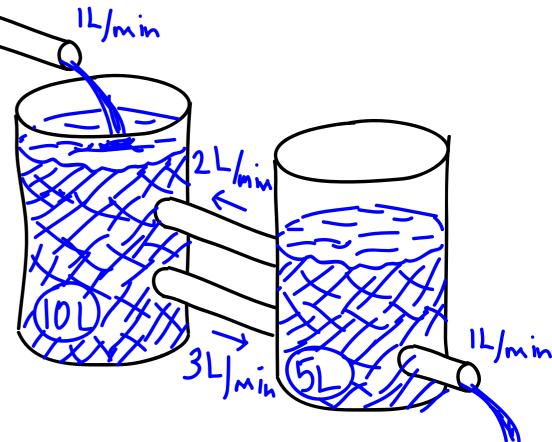
- Salt water flows into a tank holding 10 L of water at a rate of 1 L/min with a concentration of 200 g/L. The well-mixed solution flows from that tank into a tank holding 5 L through a pipe at 3 L/min. Another pipe takes the solution in the second tank back into the first at a rate of 2 L/ min. Finally, solution drains out of the second tank at a rate of 1 L/min.
- Write down a system of equations in matrix form for the mass of salt in each tank.



Nonhomogeneous system of DEs - example

- Salt water flows into a tank holding 10 L of water at a rate of 1 L/min with a concentration of 200 g/L. The well-mixed solution flows from that tank into a tank holding 5 L through a pipe at 3 L/min. Another pipe takes the solution in the second tank back into the first at a rate of 2 L/min. Finally, solution drains out of the second tank at a rate of 1 L/min.
- Write down a system of equations in matrix form for the mass of salt in each tank.

$$\binom{m_1}{m_2}' = \binom{-\frac{3}{10} & \frac{2}{5}}{\frac{3}{10} & -\frac{3}{5}} \binom{m_1}{m_2} + \binom{200}{0}$$



- Salt water flows into a tank holding 10 L of water at a rate of 1 L/min with a concentration of 200 g/L. The well-mixed solution flows from that tank into a tank holding 5 L through a pipe at 3 L/min. Another pipe takes the solution in the second tank back into the first at a rate of 2 L/ min. Finally, solution drains out of the second tank at a rate of 1 L/min.
- Find the eigenvalues and the long term (steady state) solution.

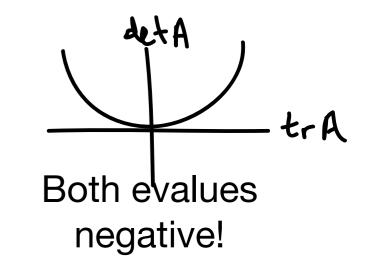
- Salt water flows into a tank holding 10 L of water at a rate of 1 L/min with a concentration of 200 g/L. The well-mixed solution flows from that tank into a tank holding 5 L through a pipe at 3 L/min. Another pipe takes the solution in the second tank back into the first at a rate of 2 L/ min. Finally, solution drains out of the second tank at a rate of 1 L/min.
- Find the eigenvalues and the long term (steady state) solution.

$$\binom{m_1}{m_2}' = \begin{pmatrix} -\frac{3}{10} & \frac{2}{5} \\ \frac{3}{10} & -\frac{3}{5} \end{pmatrix} \binom{m_1}{m_2} + \binom{200}{0}$$

- Salt water flows into a tank holding 10 L of water at a rate of 1 L/min with a concentration of 200 g/L. The well-mixed solution flows from that tank into a tank holding 5 L through a pipe at 3 L/min. Another pipe takes the solution in the second tank back into the first at a rate of 2 L/ min. Finally, solution drains out of the second tank at a rate of 1 L/min.
- Find the eigenvalues and the long term (steady state) solution.

$$\begin{pmatrix} m_1 \\ m_2 \end{pmatrix}' = \begin{pmatrix} -\frac{3}{10} & \frac{2}{5} \\ \frac{3}{10} & -\frac{3}{5} \end{pmatrix} \begin{pmatrix} m_1 \\ m_2 \end{pmatrix} + \begin{pmatrix} 200 \\ 0 \end{pmatrix}$$
$$\operatorname{tr} A = -\frac{9}{10} \qquad (\operatorname{tr} A)^2 = \frac{81}{100}$$
$$\operatorname{det} A = \frac{9}{50} - \frac{6}{50} = \frac{3}{50} \qquad 4 \operatorname{det} A = \frac{12}{50}$$
Both evalues negative!

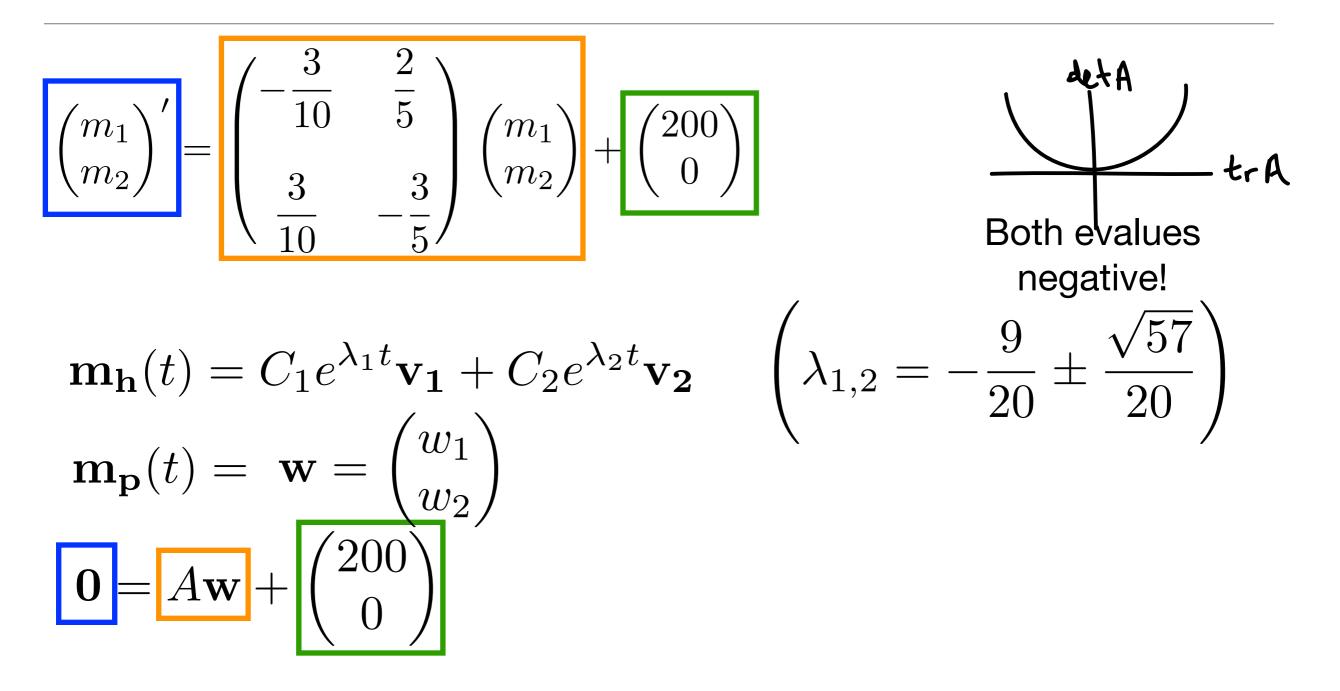
$$\binom{m_1}{m_2}' = \begin{pmatrix} -\frac{3}{10} & \frac{2}{5} \\ \frac{3}{10} & -\frac{3}{5} \end{pmatrix} \binom{m_1}{m_2} + \binom{200}{0}$$

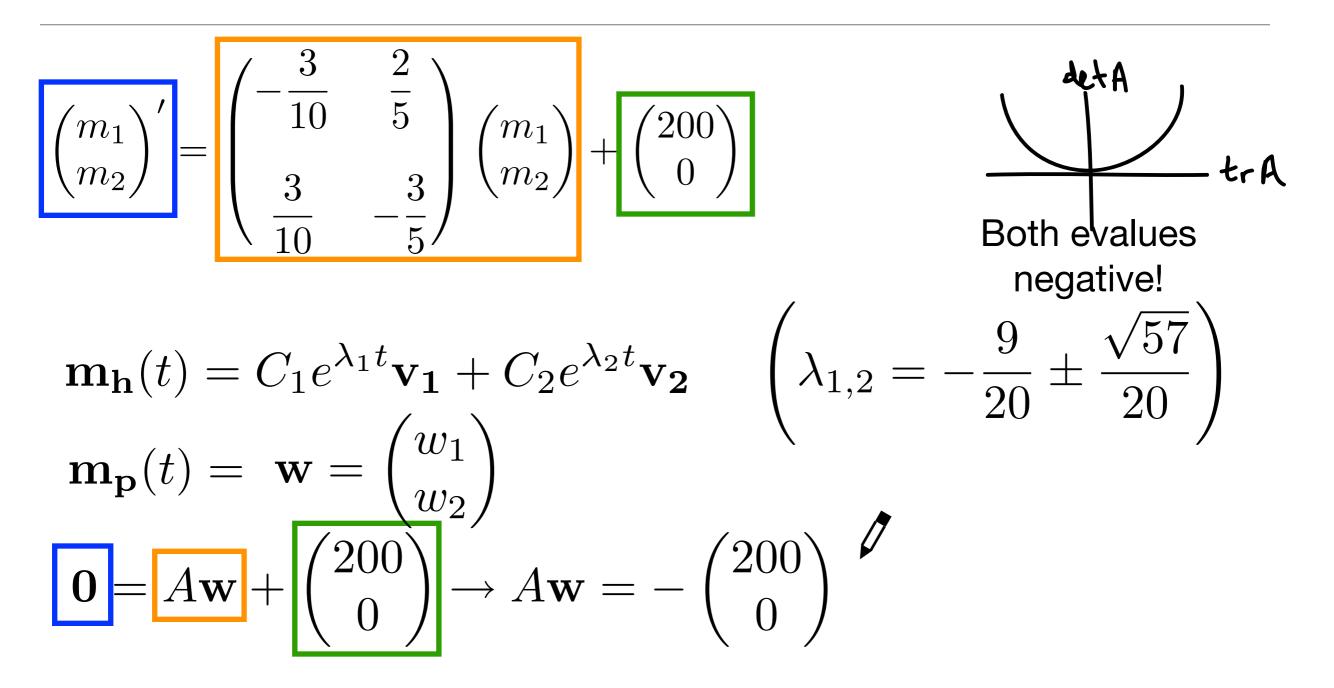


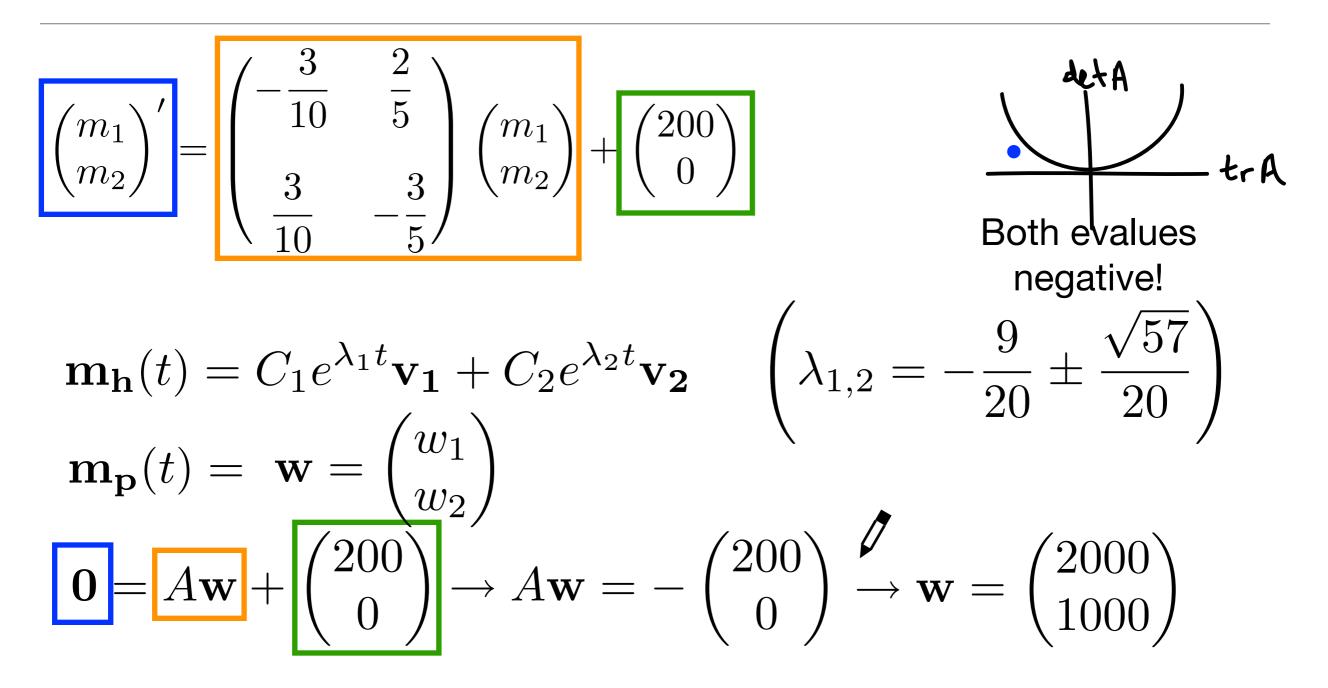
$$\begin{pmatrix} m_1 \\ m_2 \end{pmatrix}' = \begin{pmatrix} -\frac{3}{10} & \frac{2}{5} \\ \frac{3}{10} & -\frac{3}{5} \end{pmatrix} \begin{pmatrix} m_1 \\ m_2 \end{pmatrix} + \begin{pmatrix} 200 \\ 0 \end{pmatrix}$$
Both evalues negative!
$$\mathbf{m_h}(t) = C_1 e^{\lambda_1 t} \mathbf{v_1} + C_2 e^{\lambda_2 t} \mathbf{v_2} \qquad \left(\lambda_{1,2} = -\frac{9}{20} \pm \frac{\sqrt{57}}{20} \right)$$

$$\mathbf{m_p}(t) = \mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$$

$$\mathbf{0} = A\mathbf{w} + \begin{pmatrix} 200 \\ 0 \end{pmatrix}$$







$$\begin{pmatrix} m_1 \\ m_2 \end{pmatrix}' = \begin{pmatrix} -\frac{3}{10} & \frac{2}{5} \\ \frac{3}{10} & -\frac{3}{5} \end{pmatrix} \begin{pmatrix} m_1 \\ m_2 \end{pmatrix} + \begin{pmatrix} 200 \\ 0 \end{pmatrix}$$
Both evalues negative!
$$\mathbf{m_h}(t) = C_1 e^{\lambda_1 t} \mathbf{v_1} + C_2 e^{\lambda_2 t} \mathbf{v_2} \qquad \begin{pmatrix} \lambda_{1,2} = -\frac{9}{20} \pm \frac{\sqrt{57}}{20} \end{pmatrix}$$

$$\mathbf{m_p}(t) = \mathbf{w} = \begin{pmatrix} w_1 \\ w_2 \end{pmatrix}$$

$$\mathbf{0} = A\mathbf{w} + \begin{pmatrix} 200 \\ 0 \end{pmatrix} \rightarrow A\mathbf{w} = -\begin{pmatrix} 200 \\ 0 \end{pmatrix} \stackrel{\checkmark}{\rightarrow} \mathbf{w} = \begin{pmatrix} 2000 \\ 1000 \end{pmatrix}$$

$$\mathbf{m}(t) = C_1 e^{\lambda_1 t} \mathbf{v_1} + C_2 e^{\lambda_2 t} \mathbf{v_2} + \begin{pmatrix} 2000 \\ 1000 \end{pmatrix}$$

- A "Method of undetermined coefficients" similar to what we saw for second order equations can be used for systems.
- For this course, I'll only test you on constant nonhomogeneous terms (like the previous example).

• Motivation for Laplace transforms:

- Motivation for Laplace transforms:
 - \bullet We know how to solve $ay^{\prime\prime}+by^{\prime}+cy=g(t)\,$ when g(t) is polynomial, exponential, trig.

- Motivation for Laplace transforms:
 - \bullet We know how to solve $ay^{\prime\prime}+by^{\prime}+cy=g(t)\,$ when g(t) is polynomial, exponential, trig.
 - In applications, g(t) is often "piece-wise continuous" meaning that it consists of a finite number of pieces with jump discontinuities in between. For example,

$$g(t) = \begin{cases} \sin(\omega t) & 0 < t < 10, \\ 0 & t \ge 10. \end{cases}$$

- Motivation for Laplace transforms:
 - We know how to solve ay'' + by' + cy = g(t) when g(t) is polynomial, exponential, trig.
 - In applications, g(t) is often "piece-wise continuous" meaning that it consists of a finite number of pieces with jump discontinuities in between. For example,

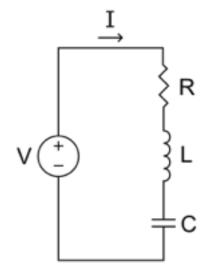
$$g(t) = \begin{cases} \sin(\omega t) & 0 < t < 10, \\ 0 & t \ge 10. \end{cases}$$

 These can be handled by previous techniques (modified) but it isn't pretty (solve from t=0 to t=10, use y(10) as the IC for a new problem starting at t=10).

• Motivation for Laplace transforms - example RLC circuit

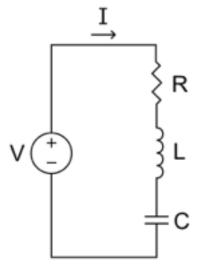
- Motivation for Laplace transforms example RLC circuit
 - Resistor, inductor and capacitor in series

$$I''(t) + \frac{R}{L}I'(t) + \frac{1}{LC}I(t) = v(t)$$



- Motivation for Laplace transforms example RLC circuit
 - Resistor, inductor and capacitor in series

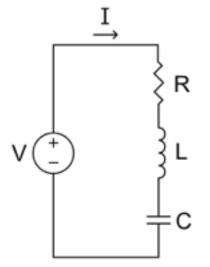
$$I''(t) + \frac{R}{L}I'(t) + \frac{1}{LC}I(t) = v(t)$$



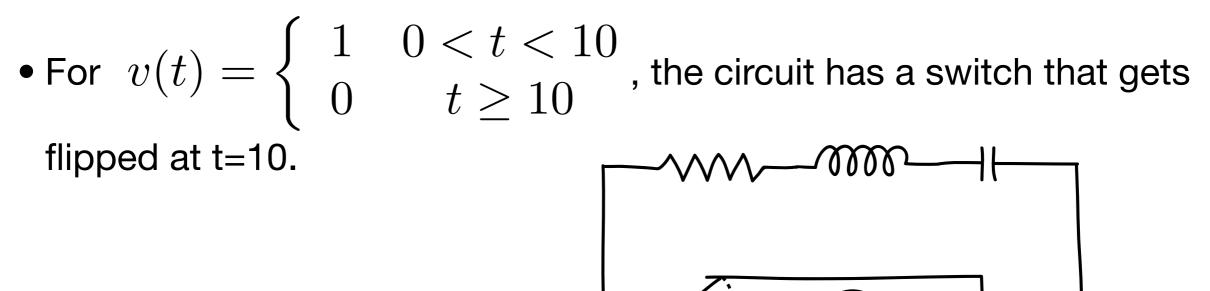
• If v(t) comes from radio waves then $v(t) = A\cos(\omega t)$ and the circuit is called a radio receiver.

- Motivation for Laplace transforms example RLC circuit
 - Resistor, inductor and capacitor in series

$$I''(t) + \frac{R}{L}I'(t) + \frac{1}{LC}I(t) = v(t)$$



• If v(t) comes from radio waves then $v(t) = A\cos(\omega t)$ and the circuit is called a radio receiver.



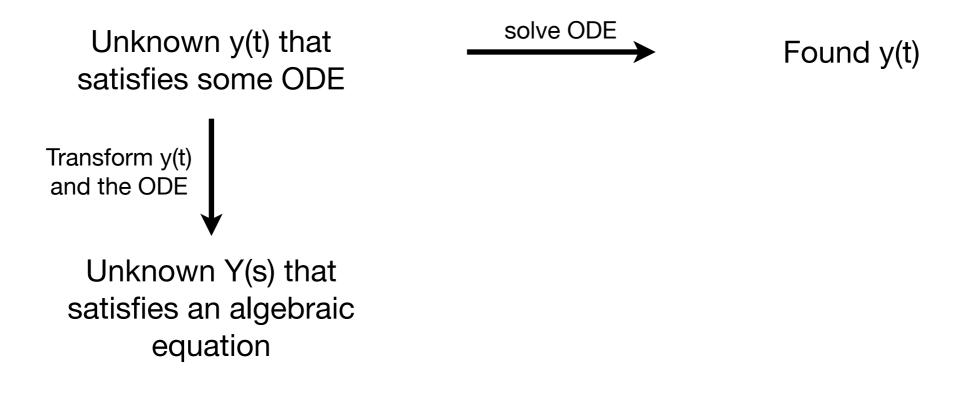
- Instead of not-so-pretty techniques, we use Laplace transforms.
- Idea:

- Instead of not-so-pretty techniques, we use Laplace transforms.
- Idea:

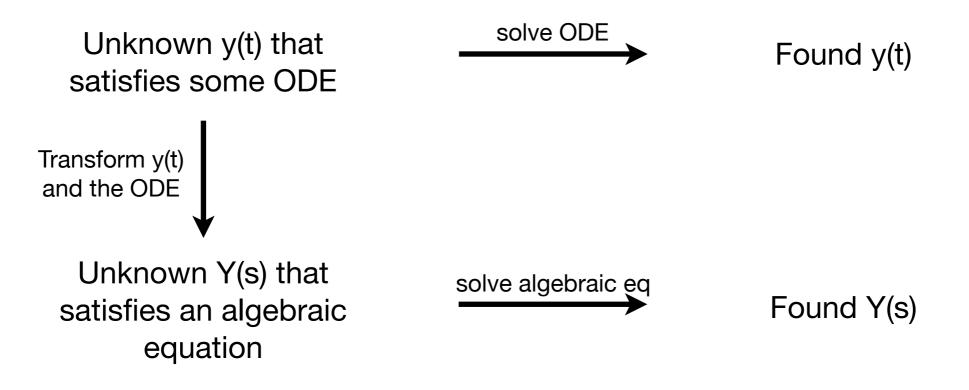
Unknown y(t) that satisfies some ODE

solve ODE Found y(t)

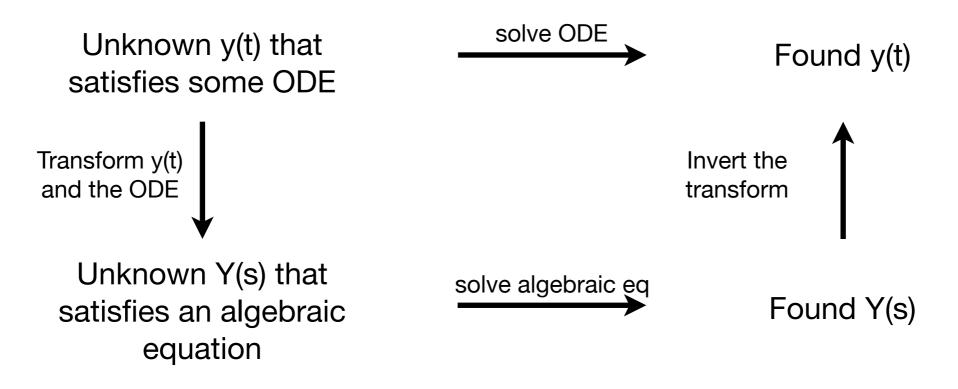
- Instead of not-so-pretty techniques, we use Laplace transforms.
- Idea:



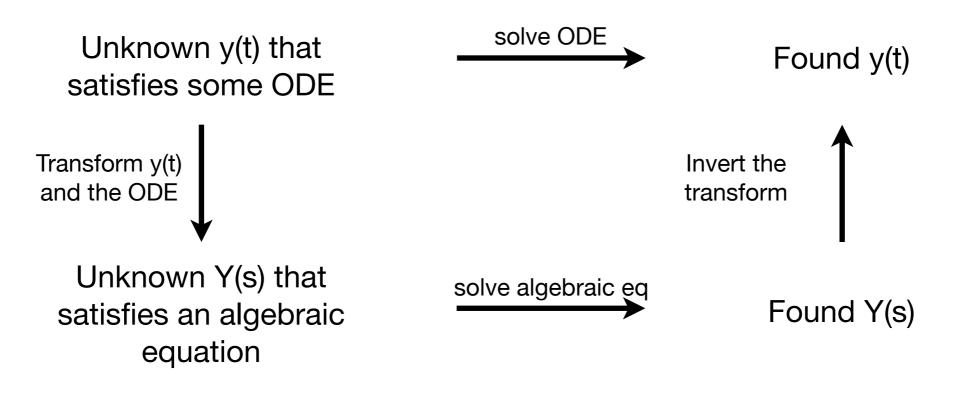
- Instead of not-so-pretty techniques, we use Laplace transforms.
- Idea:



- Instead of not-so-pretty techniques, we use Laplace transforms.
- Idea:



- Instead of not-so-pretty techniques, we use Laplace transforms.
- Idea:



• Laplace transform of y(t): $\mathcal{L}\{y(t)\} = Y(s) = \int_0^\infty e^{-st} y(t) \ dt$

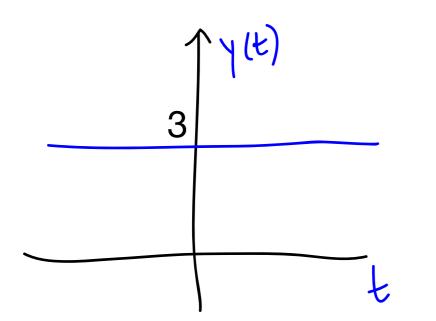
• What is the Laplace transform of y(t) = 3 ?

$$\mathcal{L}\{y(t)\} = Y(s) = \int_0^\infty e^{-st} 3 dt$$

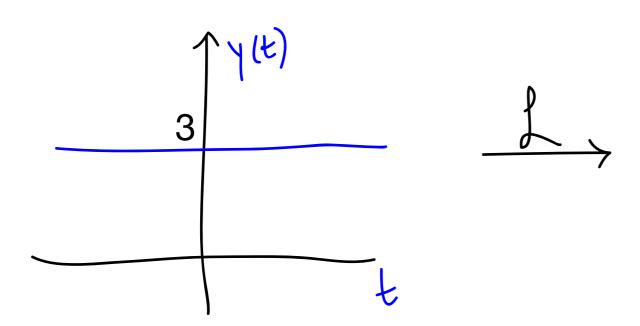
$$\mathcal{L}\{y(t)\} = Y(s) = \int_0^\infty e^{-st} 3 \, dt$$
$$= -\frac{3}{s} e^{-st} \Big|_0^\infty$$
$$= \lim_{A \to \infty} -\frac{3}{s} e^{-st} \Big|_0^A$$
$$= -\frac{3}{s} \left(\lim_{A \to \infty} e^{-sA} - 1 \right)$$
$$= \frac{3}{s} \text{ provided } s > 0 \text{ and does not}$$
exist otherwise.

$$\begin{split} \mathcal{L}\{y(t)\} &= Y(s) = \int_0^\infty e^{-st} 3 \ dt \\ &= \frac{3}{s} \quad \text{provided } s > 0 \text{ and does not} \\ &\quad \text{exist otherwise.} \end{split}$$

$$\begin{split} \mathcal{L}\{y(t)\} &= Y(s) = \int_0^\infty e^{-st} 3 \ dt \\ &= \frac{3}{s} \quad \text{provided } s > 0 \text{ and does not} \\ &\quad \text{exist otherwise.} \end{split}$$



$$\begin{split} \mathcal{L}\{y(t)\} &= Y(s) = \int_0^\infty e^{-st} 3 \ dt \\ &= \frac{3}{s} \quad \text{provided } s > 0 \text{ and does not} \\ &\quad \text{exist otherwise.} \end{split}$$



$$\begin{split} \mathcal{L}\{y(t)\} &= Y(s) = \int_0^\infty e^{-st} 3 \ dt \\ &= \frac{3}{s} \quad \text{provided } s > 0 \text{ and does not} \\ &\quad \text{exist otherwise.} \end{split}$$

