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Review problems

- A mass-spring system is at rest. At t=3, a linearly increasing force is
applied until the force reaches Fo= 10 N at t=8. After that moment, the
force remains constant at that level (Fo). Write down the forcing function
for this scenario.

(A) 2¢(us(t) — us(?))
B) 2us (1) (t — 3) — 2us(t)(t — 8)
©) 2us(£)(t — 3) — 2us(£)(t — 3)
(D) 10(us(t) — us(?))
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 Solve this equation using Laplace transform techniques.



Review problems

» Two tanks are connected by pipes. They initially contain large quantities
of salt. Freshwater is added to the tanks so that the volumes of water
are constant. The mass of salt in each tank is given by the system of

eguations
i miy\ —2 0 T
dt \mo/) \1 =3 Mo

where time is measured in minutes. How long does it take for the
concentration in both tanks to decrease to less than one tenth of their
original values?

(A) 1 minute
(B) 2 minutes (D) 5 minutes
(C) 3 minutes (E) Don’t know.
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Require eM < 1/10 for both evalues A1=-2 & Ao=-3.
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- A patient is given a 100 mg injection of a medication every 4 hours for
weeks. The mean life of the drug in the bloodstream is 10 hours (so it is

cleared at a rate 1/10 hour 7). Sketch the amount of the drug in the
patient’s system as a function of time.
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- A patient is given a 100 mg injection of a medication every 4 hours for
weeks. The mean life of the drug in the bloodstream is 10 hours (so it is

cleared at a rate 1/10 hour 7). Sketch the amount of the drug in the
patient’s system as a function of time.

A

NN

N

4\

]/

i y

i : 7
U 4 (L \6 ‘l:

 Exercise (tricky): calculate the longterm minimum and maximum
concentration.
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- Salt water flows into a tank holding 10 L of water at a rate of 1 L/min
with a concentration of 200 g/L. The well-mixed solution flows from that
tank into a tank holding 5 L through a pipe at 3 L/min. Another pipe
takes the solution in the second tank back into the first at a rate of 2 L/
min. Finally, solution drains out of the second tank at a rate of 1 L/min.

- Write down a system of equations in matrix form for the mass of salt in
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takes the solution in the second tank back into the first at a rate of 2 L/
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