Repeated roots

- For the general case, $a y^{\prime \prime}+b y^{\prime}+c y=0$, by assuming $y(t)=e^{r t}$ we get the characteristic equation:

$$
a r^{2}+b r+c=0
$$

- There are three cases.
i. Two distinct real roots: $b^{2}-4 a c>0 .\left(r_{1} \neq r_{2}\right)$
ii.A repeated real root: $b^{2}-4 a c=0$.
iii.Two complex roots: $\mathrm{b}^{2}-4 \mathrm{ac}<0$.
- For case ii ($r_{1}=r_{2}=r$), we need another independent solution!
- Reduction of order - a method for guessing another solution.

Reduction of order

- You have one solution $y_{1}(t)$ and you want to find another independent one, $y_{2}(t)$.
- Guess that $y_{2}(t)=v(t) y_{1}(t)$ for some as yet unknown $v(t)$. If you can find $v(t)$ this way, great. If not, gotta try something else.
- Example - $y^{\prime \prime}+4 y^{\prime}+4 y=0$. Only one root to the characteristic equation, $\mathrm{r}=-2$, so we only get one solution that way: $y_{1}(t)=e^{-2 t}$.
- Use Reduction of order to find a second solution.

$$
y_{2}(t)=v(t) e^{-2 t}
$$

- Heuristic explanation for exponential solutions and Reduction of order.

Reduction of order

For the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$, say you know $y_{1}(t)=e^{-2 t}$. Guess $y_{2}(t)=v(t) e^{-2 t} . \quad y_{2}^{\prime}(t)=v^{\prime}(t) e^{-2 t}-2 v(t) e^{-2 t}$

$$
4 y_{2}(t) \stackrel{\Downarrow}{=} 4 v(t) e^{2 t} \quad 4 y_{2}^{\prime}(t) \stackrel{\Downarrow}{=} 4 v^{\prime}(t) e^{-2 t}-8 v(t) e^{-2 t}
$$

$$
\begin{gathered}
y_{2}^{\prime \prime}(t)=v^{\prime \prime}(t) e^{-2 t}-2 v^{\prime}(t) e^{-2 t}-2 v^{\prime}(t) e^{-2 t}+4 v(t) e^{-2 t} \\
\searrow y_{2}^{\prime \prime}(t)=v^{\prime \prime}(t) e^{-2 t}-4 v^{\prime}(t) e^{-2 t}+4 v(t) e^{-2 t} \\
0=y_{2}^{\prime \prime}+4 y_{2}^{\prime}+4 y_{2}=v^{\prime \prime} e^{-2 t} \\
v^{\prime \prime}=0 \Rightarrow v^{\prime}=C_{1} \Rightarrow v(t)=C_{1} t+C_{2}
\end{gathered}
$$

Reduction of order

For the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$, say you know $y_{1}(t)=e^{-2 t}$.
Guess $y_{2}(t)=v(t) e^{-2 t} \quad\left(\right.$ where $\quad v(t)=C_{1} t+C_{2} \quad$).

$$
\begin{aligned}
& =\left(C_{1} t+C_{2}\right) e^{-2 t} \\
y(t) & =C \underbrace{t e^{-2 t}}_{y_{2}(t)}+C e_{y_{1}(t)}^{e^{-2 t}}
\end{aligned}
$$

Is this the general solution? Calculate the Wronskian:
$W\left(e^{-2 t}, t e^{-2 t}\right)(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)=e^{-4 t} \neq 0$
So yes!

Summary

- For the general case, $a y^{\prime \prime}+b y^{\prime}+c y=0$, by assuming $y(t)=e^{r t}$ we get the characteristic equation:

$$
a r^{2}+b r+c=0
$$

- There are three cases.
i. Two distinct real roots: $\mathrm{b}^{2}-4 \mathrm{ac}>0$. $\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right)$

$$
y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}
$$

ii.A repeated real root: $\mathrm{b}^{2}-4 \mathrm{ac}=0 .(r)$

$$
y(t)=C_{1} e^{r t}+C_{2} t e^{r t}
$$

iii. Two complex roots: $b^{2}-4 \mathrm{ac}<0 . \quad\left(\mathrm{r}_{1,2}=\alpha \pm i \beta\right)$

$$
y=e^{\alpha t}\left(C_{1} \cos (\beta t)+C_{2} \sin (\beta t)\right)
$$

Second order, linear, constant coeff, homogeneous

- Find the general solution to the equation

$$
y^{\prime \prime}-6 y^{\prime}+8 y=0
$$

(A) $y(t)=C_{1} e^{-2 t}+C_{2} e^{-4 t}$
$\hat{*}(\mathrm{~B}) y(t)=C_{1} e^{2 t}+C_{2} e^{4 t}$
(C) $y(t)=e^{2 t}\left(C_{1} \cos (4 t)+C_{2} \sin (4 t)\right)$
(D) $y(t)=e^{-2 t}\left(C_{1} \cos (4 t)+C_{2} \sin (4 t)\right)$
(E) $y(t)=C_{1} e^{2 t}+C_{2} t e^{4 t}$

Second order, linear, constant coeff, homogeneous

- Find the general solution to the equation

$$
y^{\prime \prime}-6 y^{\prime}+9 y=0
$$

(A) $y(t)=C_{1} e^{3 t}$
(B) $y(t)=C_{1} e^{3 t}+C_{2} e^{3 t}$
(C) $y(t)=C_{1} e^{3 t}+C_{2} e^{-3 t}$
(D) $y(t)=C_{1} e^{3 t}+C_{2} t e^{3 t}$
(E) $y(t)=C_{1} e^{3 t}+C_{2} v(t) e^{3 t}$

Second order, linear, constant coeff, homogeneous

- Find the general solution to the equation

$$
y^{\prime \prime}-6 y^{\prime}+10 y=0
$$

(A) $y(t)=C_{1} e^{3 t}+C_{2} e^{t}$
(B) $y(t)=C_{1} e^{3 t}+C_{2} e^{-t}$
(C) $y(t)=C_{1} \cos (3 t)+C_{2} \sin (3 t)$
(D) $y(t)=e^{t}\left(C_{1} \cos (3 t)+C_{2} \sin (3 t)\right)$
(E) $y(t)=e^{3 t}\left(C_{1} \cos (t)+C_{2} \sin (t)\right)$

Second order, linear, constant coeff, nonhomogeneous (3.5)

- Our next goal is to figure out how to find solutions to nonhomogeneous equations like this one:

$$
y^{\prime \prime}-6 y^{\prime}+8 y=\sin (2 t)
$$

- But first, a bit more on the connections between matrix algebra and differential equations...

Some connections to linear (matrix) algebra

- An $m \times n$ matrix is a gizmo that takes an n-vector and returns an $m-$ vector:

$$
\bar{y}=A \bar{x}
$$

- It is called a linear operator because it has the following properties:

$$
\begin{aligned}
A(c \bar{x}) & =c A \bar{x} \\
A(\bar{x}+\bar{y}) & =A \bar{x}+A \bar{y}
\end{aligned}
$$

- Not all operators work on vectors. Derivative operators take a function and return a new function. For example,

$$
z=L[y]=\frac{d^{2} y}{d t^{2}}-2 \frac{d y}{d t}+y
$$

- This one is linear because

$$
\begin{aligned}
L[c y] & =c L[y] \\
L[y+z] & =L[y]+L[z]
\end{aligned}
$$

Note: y, z are functions of t and c is a constant.

Some connections to linear (matrix) algebra

- A homogeneous matrix equation has the form

$$
A \bar{x}=\overline{0}
$$

- A non-homogeneous matrix equation has the form

$$
A \bar{x}=\bar{b}
$$

- A homogeneous differential equation has the form

$$
L[y]=0
$$

- A non-homogeneous differential equation has the form

$$
L[y]=g(t)
$$

Solutions to homogeneous matrix equations

- The matrix equation $A \bar{x}=\overline{0}$ could have (depending on A)
(A) no solutions.
\Rightarrow
(B) exactly one solution.
\Rightarrow
(C) a one-parameter family of solutions.
\Rightarrow
(D) an n-parameter family of solutions.

Possibilities:

Choose the answer that is incorrect.

$$
\bar{x}=C_{1}\left(\begin{array}{c}
1 \bar{x} \\
\bar{x}-\frac{1}{士} \\
1
\end{array}\right)=\overline{C_{+}}+1 \begin{aligned}
& 1 \\
& C_{2}^{1} \\
& 1
\end{aligned}\left(\begin{array}{l}
0 \\
2 \\
1
\end{array}\right)
$$

Solutions to homogeneous matrix equations

- Example 1. Solve the equation $A \bar{x}=\overline{0}$ where

$$
A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
1 & -1 & -2 \\
2 & 1 & 1
\end{array}\right)
$$

Each equation describes a plane.

- Row reduction gives

$$
A \sim\left(\begin{array}{ccc}
1 & 0 & -1 / 3 \\
0 & 1 & 5 / 3 \\
0 & 0 & 0
\end{array}\right)
$$

In this case, only two of them really matter.

- so $x_{1}-\frac{1}{3} x_{3}=0$ and $x_{2}+\frac{5}{3} x_{3}=0$ and x_{3} can be whatever (because it doesn't have a leading one).

Solutions to homogeneous matrix equations

- Example 1. Solve the equation $A \bar{x}=\overline{0}$.
- so $x_{1}-\frac{1}{3} x_{3}=0$ and $x_{2}+\frac{5}{3} x_{3}=0$ and x_{3} can be whatever.

$$
\begin{aligned}
x_{1} & =\frac{1}{3} x_{3} \\
x_{2} & =-\frac{5}{3} x_{3} \\
x_{3} & =C
\end{aligned}
$$

Solutions to homogeneous matrix equations

- Example 2. Solve the equation $A \bar{x}=\overline{0}$ where

$$
A=\left(\begin{array}{ccc}
1 & -2 & 1 \\
2 & -4 & 2 \\
-1 & 2 & -1
\end{array}\right)
$$

- Row reduction gives

$$
A \sim\left(\begin{array}{ccc}
1 & -2 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

- so $x_{1}-2 x_{2}+x_{3}=0$ and both x_{2} and x_{3} can be whatever.

$$
\bar{x}=C_{1}\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)+C_{2}\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)
$$

Solutions to homogeneous matrix equations

- Example 2. Solve the equation $A \bar{x}=\overline{0}$ where

Solutions to non-homogeneous matrix equations

- Example 3. Solve the equation $A \bar{x}=\bar{b}$ where

$$
A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
1 & -1 & -2 \\
2 & 1 & 1
\end{array}\right) \quad \text { and } \quad \bar{b}=\left(\begin{array}{l}
2 \\
0 \\
2
\end{array}\right)
$$

- Row reduction gives

$$
\left(\begin{array}{ccc|c}
1 & 0 & -1 / 3 & 2 / 3 \\
0 & 1 & 5 / 3 & 2 / 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

- so $x_{1}-\frac{1}{3} x_{3}=\frac{2}{3}$ and $x_{2}+\frac{5}{3} x_{3}=\frac{2}{3}$ and x_{3} can be whatever.

Solutions to non-homogeneous matrix equations

- Example 3. Solve the equation $A \bar{x}=\bar{b}$.
- so $x_{1}-\frac{1}{3} x_{3}=\frac{2}{3}$ and $x_{2}+\frac{5}{3} x_{3}=\frac{2}{3}$ and x_{3} can be whatever.

$$
x_{1}=\frac{1}{3} x_{3}+\frac{2}{3} \quad x_{2}=-\frac{5}{3} x_{3}+\frac{2}{3}
$$

$$
\bar{x}=\frac{G 11}{3}\left(\begin{array}{c}
1 \\
-5 \\
3
\end{array}\right)
$$

the general solution to the homogeneous problem

one particular solution to nonhomogeneous problem

Solutions to nonhomogeneous differential equations

- To solve a nonhomogeneous differential equation:

1. Find the general solution to the associated homogeneous problem, $\mathrm{y}_{\mathrm{h}}(\mathrm{t})$.

2. Find a particular solution to the nonhomogeneous problem, $y_{p}(t)$.

3. The general solution to the nonhomogeneous problem is their sum:

$$
y=y_{h}+y_{p}=C_{1} y_{1}+C_{2} y_{2}+y_{p}
$$

- For step 2, try "Method of undetermined coefficients"...

