Repeated roots

 \bullet For the general case, $ay^{\prime\prime}+by^{\prime}+cy=0$, by assuming $\,y(t)=e^{rt}$

we get the characteristic equation:

$$ar^2 + br + c = 0$$

• There are three cases.

i. Two distinct real roots: $b^2 - 4ac > 0$. $(r_1 \neq r_2)$

ii.A repeated real root: $b^2 - 4ac = 0$.

iii.Two complex roots: $b^2 - 4ac < 0$.

- For case ii ($r_1 = r_2 = r$), we need another independent solution!
- Reduction of order a method for guessing another solution.

Reduction of order

- You have one solution $y_1(t)$ and you want to find another independent one, $y_2(t)$.
- Guess that $y_2(t) = v(t)y_1(t)$ for some as yet unknown v(t). If you can find v(t) this way, great. If not, gotta try something else.
- Example y'' + 4y' + 4y = 0. Only one root to the characteristic equation, r=-2, so we only get one solution that way: $y_1(t) = e^{-2t}$.
- Use Reduction of order to find a second solution.

$$y_2(t) = v(t)e^{-2t}$$

• Heuristic explanation for exponential solutions and Reduction of order.

Reduction of order

For the equation y'' + 4y' + 4y = 0, say you know $y_1(t) = e^{-2t}$.

$$y_{2}''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_{2}''(t) = v''(t)e^{-2t} - 4v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$0 = y_{2}'' + 4y_{2}' + 4y_{2} = v''e^{-2t}$$

$$v'' = 0 \implies v' = C_{1} \implies v(t) = C_{1}t + C_{2}$$

Reduction of order

For the equation y'' + 4y' + 4y = 0, say you know $y_1(t) = e^{-2t}$. Guess $y_2(t) = v(t)e^{-2t}$ (where $v(t) = C_1t + C_2$). $= (C_1t + C_2)e^{-2t}$ $y(t) = C(te^{-2t}) + C(e^{-2t})$ $y_2(t) = y_1(t)$

Is this the general solution? Calculate the Wronskian:

$$W(e^{-2t}, te^{-2t})(t) = y_1(t)y_2'(t) - y_1'(t)y_2(t) = e^{-4t} \neq 0$$

So yes!

Summary

 \bullet For the general case, $ay^{\prime\prime}+by^{\prime}+cy=0$, by assuming $\,y(t)=e^{rt}$

we get the characteristic equation:

$$ar^2 + br + c = 0$$

• There are three cases.

i. Two distinct real roots: b² - 4ac > 0. (r₁, r₂) $y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$

ii.A repeated real root: $b^2 - 4ac = 0.(r)$

$$y(t) = C_1 e^{rt} + C_2 t e^{rt}$$

iii.Two complex roots: $b^2 - 4ac < 0$. ($r_{1,2} = \alpha \pm i\beta$)

$$y = e^{\alpha t} \left(C_1 \cos(\beta t) + C_2 \sin(\beta t) \right)$$

Second order, linear, constant coeff, homogeneous

• Find the general solution to the equation

$$y'' - 6y' + 8y = 0$$

(A)
$$y(t) = C_1 e^{-2t} + C_2 e^{-4t}$$

$$rightarrow$$
 (B) $y(t) = C_1 e^{2t} + C_2 e^{4t}$

(C)
$$y(t) = e^{2t}(C_1\cos(4t) + C_2\sin(4t))$$

(D)
$$y(t) = e^{-2t} (C_1 \cos(4t) + C_2 \sin(4t))$$

(E)
$$y(t) = C_1 e^{2t} + C_2 t e^{4t}$$

Second order, linear, constant coeff, homogeneous

• Find the general solution to the equation

$$y'' - 6y' + 9y = 0$$

(A)
$$y(t) = C_1 e^{3t}$$

(B)
$$y(t) = C_1 e^{3t} + C_2 e^{3t}$$

(C)
$$y(t) = C_1 e^{3t} + C_2 e^{-3t}$$

☆ (D)
$$y(t) = C_1 e^{3t} + C_2 t e^{3t}$$

(E)
$$y(t) = C_1 e^{3t} + C_2 v(t) e^{3t}$$

Second order, linear, constant coeff, homogeneous

• Find the general solution to the equation

$$y'' - 6y' + 10y = 0$$
(A) $y(t) = C_1 e^{3t} + C_2 e^t$
(B) $y(t) = C_1 e^{3t} + C_2 e^{-t}$
(C) $y(t) = C_1 \cos(3t) + C_2 \sin(3t)$
(D) $y(t) = e^t (C_1 \cos(3t) + C_2 \sin(3t))$
(E) $y(t) = e^{3t} (C_1 \cos(t) + C_2 \sin(t))$

Second order, linear, constant coeff, **non**homogeneous (3.5)

• Our next goal is to figure out how to find solutions to nonhomogeneous equations like this one:

$$y'' - 6y' + 8y = \sin(2t)$$

• But first, a bit more on the connections between matrix algebra and differential equations . . .

Some connections to linear (matrix) algebra

• An mxn matrix is a gizmo that takes an n-vector and returns an m-vector: vector: $\overline{au} = A\overline{c}$

$$\overline{y} = A\overline{x}$$

• It is called a linear operator because it has the following properties:

$$A(c\overline{x}) = cA\overline{x}$$
$$A(\overline{x} + \overline{y}) = A\overline{x} + A\overline{y}$$

 Not all operators work on vectors. Derivative operators take a function and return a new function. For example,

$$z = L[y] = \frac{d^2y}{dt^2} - 2\frac{dy}{dt} + y$$

• This one is linear because

Note: y, z are functions of t and c is a constant.

$$L[y+z] = L[y] + L[z]$$

L|cy| = cL|y|

10

Some connections to linear (matrix) algebra

• A homogeneous matrix equation has the form

$$A\overline{x} = \overline{0}$$

• A non-homogeneous matrix equation has the form

$$A\overline{x} = \overline{b}$$

• A homogeneous differential equation has the form

$$L[y] = 0$$

• A non-homogeneous differential equation has the form

$$L[y] = g(t)$$

- The matrix equation $A\overline{x} = \overline{0}$ could have (depending on A)
 - \bigstar (A) no solutions.
- \rightarrow (B) exactly one solution.
 - (C) a one-parameter family of solutions.
 - (D) an n-parameter family of solutions.

Choose the answer that is incorrect.

ns. $\overline{x} = C_1 \begin{pmatrix} 1 \overline{x} \\ \overline{x} - \overline{+} \\ 1 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ C_2 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ C_2 \\ 1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \\ 1 \\ 1 \end{pmatrix}$

• Example 1. Solve the equation $A\overline{x} = \overline{0}$ where

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & -2 \\ 2 & 1 & 1 \end{pmatrix}$$

• Row reduction gives

$$A \sim \begin{pmatrix} 1 & 0 & -1/3 \\ 0 & 1 & 5/3 \\ 0 & 0 & 0 \end{pmatrix}$$

In this case, only two of them really matter.

• so $x_1 - \frac{1}{3}x_3 = 0$ and $x_2 + \frac{5}{3}x_3 = 0$ and x_3 can be whatever

(because it doesn't have a leading one).

• Example 1. Solve the equation $A\overline{x} = \overline{0}$.

• so
$$x_1 - \frac{1}{3}x_3 = 0$$
 and $x_2 + \frac{5}{3}x_3 = 0$ and x_3 can be whatever.

$$x_1 = \frac{1}{3}x_3 \qquad x_1 = \frac{1}{3}C$$

$$x_2 = -\frac{5}{3}x_3 \qquad x_2 = -\frac{5}{3}C$$

$$x_3 = C$$
• Thus, the solution can be written as $\overline{x} = \frac{C}{3}\begin{pmatrix} 1\\ -5\\ 3 \end{pmatrix}$.

• Example 2. Solve the equation $A\overline{x} = \overline{0}$ where

$$A = \begin{pmatrix} 1 & -2 & 1 \\ 2 & -4 & 2 \\ -1 & 2 & -1 \end{pmatrix}$$

Row reduction gives

$$A \sim \begin{pmatrix} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

• so $x_1 - 2x_2 + x_3 = 0$ and both x_2 and x_3 can be whatever.

$$\overline{x} = C_1 \begin{pmatrix} 2\\1\\0 \end{pmatrix} + C_2 \begin{pmatrix} -1\\0\\1 \end{pmatrix}$$

• Example 3. Solve the equation $A\overline{x} = \overline{b}$ where

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & -2 \\ 2 & 1 & 1 \end{pmatrix} \text{ and } \overline{b} = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}.$$

Row reduction gives

$$\begin{pmatrix} 1 & 0 & -1/3 & 2/3 \\ 0 & 1 & 5/3 & 2/3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$$

• so $x_1 - \frac{1}{3}x_3 = \frac{2}{3}$ and $x_2 + \frac{5}{3}x_3 = \frac{2}{3}$ and x_3 can be whatever.

• Example 3. Solve the equation $A\overline{x} = b$.

• so $x_1 - \frac{1}{3}x_3 = \frac{2}{3}$ and $x_2 + \frac{5}{3}x_3 = \frac{2}{3}$ and x_3 can be whatever. $x_1 = \frac{1}{3}x_3 + \frac{2}{3}$ $x_2 = -\frac{5}{3}x_3 + \frac{2}{3}$ $\overline{x} = \underbrace{\frac{C}{3}}_{3} \begin{pmatrix} 1\\ -5\\ 3 \end{pmatrix} + \begin{pmatrix} 2/3\\ 2/3\\ 0 \end{pmatrix}$ the general solution to one particular solution the homogeneous to nonhomogeneous problem problem

Solutions to nonhomogeneous differential equations

- To solve a nonhomogeneous differential equation:
 - Find the general solution to the associated homogeneous problem, y_h(t).

2. Find a particular solution to the nonhomogeneous problem, $y_p(t)$.

3. The general solution to the nonhomogeneous problem is their sum:

$$y = y_h + y_p = C_1 y_1 + C_2 y_2 + y_p$$

For step 2, try "Method of undetermined coefficients"...

second order DE