Today

- Transfer functions and convolution.
- Method of Undetermined Coefficients for any periodic function.
- Fourier Series and method of undetermined coefficients

Convolution

- We often end up with transforms to invert that are the product of two known transforms. For example,

$$
Y(s)=\frac{2}{s^{2}\left(s^{2}+4\right)}=\frac{1}{s^{2}} \cdot \frac{2}{s^{2}+4}
$$

- Can we express the inverse of a product in terms of the known pieces?

$$
\begin{gathered}
F(s) G(s)=\mathcal{L}\{? ?\} \\
F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t \quad \rightarrow \quad F(s)=\int_{0}^{\infty} e^{-s \tau} f(\tau) d \tau \\
G(s)=\int_{0}^{\infty} e^{-s t} g(t) d t \quad \rightarrow \quad G(s)=\int_{0}^{\infty} e^{-s w} g(w) d w
\end{gathered}
$$

Convolution

$$
\begin{aligned}
F(s) G(s) & =\int_{0}^{\infty} e^{-s \tau} f(\tau) d \tau \int_{0}^{\infty} e^{-s w} g(w) d w \\
& =\int_{0}^{\infty} e^{-s w} g(w) \int_{0}^{\infty} e^{-s \tau} f(\tau) d \tau d w \\
& =\int_{0}^{\infty} g(w) \int_{0}^{\infty} e^{-s(\tau+w)} f(\tau) d \tau d w
\end{aligned}
$$

Replace τ using $u=\tau+w$ where w is constant in the inner integral.

$$
\begin{aligned}
& =\int_{0}^{\infty} g(w) \int_{w}^{\infty} e^{-s(u)} f(u-w) d u d w \\
& =\int_{0}^{\infty} \int_{w}^{\infty} e^{-s u} g(w) f(u-w) d u d w \\
& =\int_{a}^{b} \int_{c}^{d} e^{-s u} g(w) f(u-w) d w d u
\end{aligned}
$$

Convolution

- What are the correct values for $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d ?

$$
\begin{aligned}
& \int_{0}^{\infty} \underbrace{\int_{s}^{4} e^{-s u} g(w) f(u-w) d u}_{\mathrm{W}=\text { Constant }} d w \\
&=\int_{a}^{b} \int_{c}^{d} e^{-s u} g(w) f(u-w) d w d u
\end{aligned}
$$

(A) Integrate in u from $\mathrm{a}=0$ to $\mathrm{b}=\infty$ and in w from $\mathrm{c}=\mathrm{u}, \mathrm{d}=\infty$.
(B) Integrate in u from $\mathrm{a}=0$ to $\mathrm{b}=\mathrm{w}$ and in w from $\mathrm{c}=0$ to $\mathrm{d}=\infty$.
$\mathcal{W}(\mathrm{C})$ Integrate in u from $\mathrm{a}=0$ to $\mathrm{b}=\infty$ and in w from $\mathrm{c}=0$ to $\mathrm{d}=\mathrm{u}$.
(D) Integrate in u from $a=0$ to $\mathrm{b}=\infty$ and in w from $\mathrm{c}=\mathrm{w}$ to $\mathrm{d}=\infty$.
(E) Huh?

Convolution

-What are the correct values for $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d ?

$$
\int_{0}^{\infty} \int_{w}^{\infty} e^{-s u} g(w) f(u-w) d u d w
$$

$$
=\int_{a}^{b} \int_{c}^{d} e^{-s u} g(w) f(u-w) d w d u
$$

(A) Integrate in u from $\mathrm{a}=0$ to $\mathrm{b}=\infty$ and in w from $\mathrm{c}=\mathrm{u}, \mathrm{d}=\infty$.
(B) Integrate in u from $\mathrm{a}=0$ to $\mathrm{b}=\mathrm{w}$ and in w from $\mathrm{c}=0$ to $\mathrm{d}=\infty$.
$\mathcal{W}(\mathrm{C})$ Integrate in u from $\mathrm{a}=0$ to $\mathrm{b}=\infty$ and in w from $\mathrm{c}=0$ to $\mathrm{d}=\mathrm{u}$.
(D) Integrate in u from $\mathrm{a}=0$ to $\mathrm{b}=\infty$ and in w from $\mathrm{c}=\mathrm{w}$ to $\mathrm{d}=\infty$.
(E) Huh?

Convolution

$$
\begin{aligned}
F(s) G(s) & =\int_{0}^{\infty} e^{-s \tau} f(\tau) d \tau \int_{0}^{\infty} e^{-s w} g(w) d w \\
& =\int_{a}^{b} \int_{\Theta}^{d u} \mathbb{e}^{-s u} g((w)) f((w-w)) d \text { dww dtwu } \\
& =\int_{0}^{\infty} e^{-s u} \int_{0}^{u} g(w) f(u-w) d w d u \\
& =\int_{0}^{\infty} e^{-s u} h(u) d u=H(s)
\end{aligned}
$$

The transform of a convolution is the product of the transforms.
$h(t)=f * g(t)=\int_{0}^{u} g(w) f(t-w) d w$

$$
\Rightarrow H(s)=F(s) G(s)
$$

where $h(u)=\int_{0}^{u} g(w) f(u-w) d w$

This is called the convolution of f and g. Denoted $f * g$.

Convolution

- To invert $Y(s)=\frac{1}{s^{2}} \cdot \frac{2}{s^{2}+4}$, we can use the fact that the inverse is the convolution of the inverses of the two pieces (instead of PFD...).

$$
\begin{array}{lc}
\mathcal{L}^{-1}\left\{\frac{1}{s^{2}}\right\}=t & f * g(t)=\int_{0}^{u} g(w) f(t-w) d w \\
\mathcal{L}^{-1}\left\{\frac{2}{s^{2}+4}\right\}=\sin (2 t) & f * g=g * f \\
y(t)= & \int_{0}^{t} f(t-w) g(w) d w=\int_{0}^{t} f(t) g(t-w) d w
\end{array}
$$

$\hat{\omega}(\mathrm{A}) \quad \int_{0}^{t}(t-w) \sin (2 w) d w \quad \hat{\omega}(\mathrm{C}) \int_{0}^{t} w \sin (2(t-w)) d w$
(B) $\int_{0}^{t}(t-w) \sin (2 t) d w$
(D) $\int_{0}^{t} w \sin (2(w-t)) d w$

Convolution

- Transfer functions

$$
\begin{aligned}
a y^{\prime \prime}+b y^{\prime}+c y & =g(t), \quad y(0)=0, y^{\prime}(0)=0 \\
Y(s) & =\frac{1}{a s^{2}+b s+c} G(s)
\end{aligned}
$$

- Define the transfer function for the ODE:

$$
\begin{aligned}
H(s) & =\frac{1}{a s^{2}+b s+c} \quad \text { Independent of } \mathrm{g}(\mathrm{t})! \\
y(t) & =(h * g)(t)
\end{aligned}
$$

- $h(t)$ is called the impulse response begause it solves (1) when $g(t)=\delta(t)$.

$$
\begin{aligned}
& g(t)=\delta(t) \\
& G(s)=e^{-0 s}=1 \\
& Y(s)=\frac{1}{a s^{2}+b s+c}
\end{aligned}
$$

$$
y_{I R}(t)=h(t)=\mathcal{L}^{-1}\left\{\frac{1}{a s^{2}+b s+c}\right\}
$$

Convolution

- Interpreting the transfer function in a model of memory.
- Your contact list got deleted. You are forced to memorize phone numbers. Let $n(t)$ be the number of phone numbers you remember at time t. You forget numbers at a rate k . Finally, $\mathrm{g}(\mathrm{t})$ is the number of phone numbers per unit time that you memorize at time t.
- Equation:

$$
n^{\prime}=-k n+g(t)
$$

- Transform of $\mathrm{n}(\mathrm{t}): \quad N(s)=\frac{G(s)}{s+k}$
- Transfer function:

$$
H(s)=\frac{1}{s+k}
$$

- Impulse response: $\quad h(t)=e^{-k t}$

$$
n(t)=\int_{0}^{t} h(t-w) g(w) d w=\int_{0}^{t} e^{-k(t-w)} g(w) d w
$$

Convolution

- Interpreting the transfer function in a model of memory.
- Your contact list got deleted. You are forced to memorize phone numbers. Let $n(t)$ be the number of phone numbers you remember at time t. You forget numbers at a rate k . Finally, $\mathrm{g}(\mathrm{t})$ is the number of phone numbers per unit time that you memorize at time t.
- Equation:

$$
n^{\prime}=-k n+g(t)
$$

- If you memorize one phone number at $\mathrm{t}=0(\mathrm{~g}(\mathrm{t})=\delta(\mathrm{t}) \mathrm{)}$, $\mathrm{h}(\mathrm{t})$ tells you what's left of that memory at time t.

$$
h(t)=e^{-k t}
$$

- If you memorize numbers over time (some complicated $g(t)$),

$$
\begin{aligned}
n(t) & =\int_{0}^{t} h(t-w) g(w) d w \\
& =\int_{0}^{t} e^{-(t-w)} g(w) d w
\end{aligned}
$$

Fourier series

- Recall Method of Undetermined Coefficients for equations of the form

$$
a y^{\prime \prime}+b y^{\prime}+c y=f(t)
$$

- Applicable for functions $f(t)$ that are polynomials, exponentials, sin, cos and products of those.
- How about functions like this (periodic but not trig)?

- What if we could construct such functions using only sine and cosine functions?

Fourier series

- For the equation

$$
y^{\prime \prime}+10 y=\cos (t)+\cos (2 t)+\cos (3 t)+\cos (4 t)
$$

- what will be the

(E) Don't know. Explain please.

Fourier series

- Even if the coefficients decrease, for example,

$$
y^{\prime \prime}+10 y=\cos (t)+\frac{1}{2} \cos (2 t)+\frac{1}{3} \cos (3 t)+\frac{1}{4} \cos (4 t)+\cdots
$$

- a term with frequency close to resonance can still dominate the others:
(A) $w=1$
(B) $w=2$
$s(C) w=3$
(D) $w=4$

$$
A(\omega)=\frac{1}{\left|\omega_{0}^{2}-\omega^{2}\right|}
$$

(E) Don’t know. Explain please.

Fourier series (Method Undetermined Coefficients)

- Replace $f(t)$ by a sum of trig functions, if possible:

$$
a y^{\prime \prime}+b y^{\prime}+c y=f(t) \stackrel{?}{=} A_{0}+\sum_{n=1}^{N} a_{n} \cos \left(\omega_{n} t\right)+\sum_{n=1}^{N} b_{n} \sin \left(\omega_{n} t\right)
$$

- For any $f(t)$, how do we find the best choice of A_{0}, a_{n}, b_{n} ? hittps://www.desmos.com/ calculator/vecflcysms
- This problem is closely related to an analogous vector problem: how do you choose $\mathrm{c}_{1}, \mathrm{c}_{2}$ so that $\mathrm{w}=\mathrm{c}_{1} \mathrm{v}_{1}+\mathrm{c}_{2} \mathrm{v}_{2}$?
- If v_{1} and v_{2} are perpendicular $\left(\mathrm{v}_{1} \circ \mathrm{v}_{2}=0\right)$, then

$$
\begin{aligned}
& \mathbf{w} \circ \mathbf{v}_{\mathbf{1}}=c_{1} \mathbf{v}_{\mathbf{1}} \circ \mathbf{v}_{\mathbf{1}}+c_{\mathbf{2}} \mathbf{\mathbf { v } _ { \mathbf { 2 } } \circ \mathbf { v } _ { \mathbf { 1 } }} \\
& c_{1}=\frac{\mathbf{w} \circ \mathbf{v}_{\mathbf{1}}}{\mathbf{v}_{\mathbf{1}} \circ \mathbf{v}_{\mathbf{1}}} \\
& \mathbf{v}_{\mathbf{1}} \circ \mathbf{v}_{\mathbf{1}}=\left\|\mathbf{v}_{\mathbf{1}}\right\|^{2} \quad c_{2}=\frac{\mathbf{w} \circ \mathbf{v}_{\mathbf{2}}}{\mathbf{v}_{\mathbf{2}} \circ \mathbf{v}_{\mathbf{2}}}
\end{aligned}
$$

Fourier series (Method Undetermined Coefficients)

- For functions, define dot product as

$$
g(t) \circ h(t)=\int_{\text {one period }} g(t) h(t) d t
$$

- just like for vectors but indexed over all tinstead of 1, 2, 3 :

$$
\mathbf{v} \circ \mathbf{w}=v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}
$$

Fourier series (Method Undetermined Coefficients)

- Back to our ODE, what do we choose for the w_{n} if $f(t)$ has period T? Keep in mind that we want all the functions involved to have period T .

$$
\begin{aligned}
& a y^{\prime \prime}+b y^{\prime}+c y=f(t) \stackrel{?}{=} A_{0}+\sum_{n=1}^{N} a_{n} \cos \left(\omega_{n} t\right)+\sum_{n=1}^{N} b_{n} \sin \left(\omega_{n} t\right) \\
& \text { (A) } \mathrm{w}_{\mathrm{n}}=\pi / \mathrm{T}
\end{aligned}
$$

Once we find the coefficients, this will be the N -term Fourier polynomial
(B) $W_{n}=2 \pi / T$ representation of $f(t)$. If we let $N->\infty$ we get the Fourier series.
(C) $\mathrm{w}_{\mathrm{n}}=\mathrm{n} \pi / \mathrm{T}$
(D) $\mathrm{w}_{\mathrm{n}}=2 \pi \mathrm{n} / \mathrm{T}$
(E) Don't know. Explain please.

