Today

e Midterm - avg 72%, 11 fails, 12 in the 90%s, range 7%-100%.
e Chemical diffusion in a long narrow tube/rod.
e Eigenvalues and eigenvectors in a discrete version (matrix problem).
e Eigenvalues and eigenvectors in a continuous version (DE problem).
e Does the continuous version have a complete set of eigenvectors?

e Fourier sine and cosine series



Diffusion in a long thin tube

¢ Treat the tube as If it were many small tanks connected by pipes.

—> > > > > —>

— — <«— <«— <« <«

e Two common ways to deal with the ends of the tube:

_, Fixed end-point concentration _

No-flux end-points
comes right beok. (QUDINONNONNONNCRNGND) cell bod
comes right back ( ) y

e Example: the axon of a neuron

synapse



Diffusion in a long thin tube

¢ \What happens when a drop of dye is added to the tube:

e Two-tank approximation, fixed end-point concentration:
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Diffusion in a long thin tube

e Average of two tanks (A) decays slowly at rate A1=-1 while ditterence decays
quickly at rate Ao=-3.



Diffusion in a long thin tube

¢ \What happens when a drop of dye is added to the tube:

e Eight-tank approximation, fixed end-point concentration:
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Diffusion in a long thin tube

A = oo —64
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e Add these up to satisfy initial conditions. Each component decays at a

different rate.
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Diffusion in a long thin tube

e 128-tank approximation, fixed end-point concentration:
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Diffusion in a long thin tube

¢ Eight-tank approximation, no-flux end-points:
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Diffusion in a long thin tube

¢ Eight-tank approximation, no-flux end-points:
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Diffusion in a long thin tube

e 128-tank approximation, no-flux end-point:

e First h’fode IS the constant functlon
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C

140

-0.05 -
0.1 7 F

-0.15

cay quickly.




Diffusion in a long thin tube

* |n the limit of an infinite number of tiny tanks...

e Suppose there is a function c(x,t) such that cj(t) = c(jAx,1).

0 Ax 2Ax 3Ax 4Ax 5Ax 6Ax 7Ax 8AXx

¢ \Want to replace this equation by one for the function c(x,t)...



Diffusion in a long thin tube

dc;
— = K(cj_1 — 2¢; + ¢j41)
dt
e Recall Taylor series:
1
r+Ax) T — () Ax?
fz+ ) The Diffusion Equation 2f (@)




Diffusion in a long thin tube

e \What happens to the end-point conditions? Called boundary conditions.

* For fixed end-point concentrations, called Dirichlet BCs, ., AT

c(0,t) =c(L,t) =cog =0

e For no-flux end-points, called Neumann or no-flux BCs,
c1 —cog = c(Ax,t) — c(0,t) =0

c(Ax,t) — c(0,1)
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Diffusion in a long thin tube

e Eigenvalues and eigenvectors for a partial differential equation:

e For the matrix equation ¢/ = Ac, find all eigenvalues A and

eigenvectors ¢: Ac = Ac.

e For the PDE
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Diffusion in a long thin tube

e To find A, impose appropriate boundary conditions.

e |[f the physical system has
and find all functions with corresponding A that work.
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Diffusion in a long thin tube

e How to solve an Initial Value Problem for the Diffusion Equation?

dc d*c c(L,t) =0
=D c(x,0) = f(x
boundary initial
PDE conditions condition
*0)= * T *,
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Diffusion in a long thin tube

e How to solve an Initial Value Problem for the Diffusion Equation?

dc d*c c(L,t) =0
=D c(x,0) = f(x
boundary initial
PDE conditions condition

C(.CL‘, t) — AleAlt Sin(wlw) -+ AQGAQt Siﬂ(tdga?) —+ A3€A3t Sin(wg)aj) + ...

where Ap are unknown constants to be determined by the IC, and
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Diffusion in a long thin tube

e To find A, impose appropriate boundary conditions.

e |[f the physical system has , use and
find all sin/cos functions with corresponding A that work.

e The exp functions can’t satisfy Dirichlet (or Neumann) conditions so
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Diffusion in a long thin tube

e How to solve an Initial Value Problem for the Diffusion Equation?

de d?c dc
D —(0,t) =0 c(x,0) = f(x
i~ P @ (,0) = f(x)
St =
dr "
boundary initial
PDE conditions condition
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Diffusion in a long thin tube

e How to solve an Initial Value Problem for the Diffusion Equation?

2 dc
de_p®c  T00=0  c(z,0)= f(a)
dt dx de .
de 7~
boundary initial
PDE conditions condition

c(x,t) = Ag + Aett cos(wix) + Aqe2t cos(wox) + Aze?st cos(wsx) + - - -

where Ay, are unknown constants to be determined by the IC, and

2,2
<D pT
)\p: pL2 and Wp = T




