Today

e Summary of 2x2 systems with constant coefficients.

e Nonhomogeneous example
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Nonhomogeneous case - example

e Salt water flows into a tank holding 10 L of water at a rate of 1 L/min
with a concentration of 200 g/L. The well-mixed solution flows from that
tank into a tank holding 5 L through a pipe at 3 L/min. Another pipe
takes the solution in the second tank back into the first at a rate of 2 L/
min. Finally, solution drains out of the second tank at a rate of 1 L/min.

e Write down a system of equations in matrix form for the mass of salt in
each tank.
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Nonhomogeneous case - example

e A “Method of undetermined coefficients” similar to what we saw for
second order equations can be used for systems.

e For this course, I’ll only test you on constant nonhomogeneous terms
(like the previous example) in the context of mixing problems.
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Laplace transforms

e Motivation for Laplace transforms:

e We know how to solve ay’ + by’ + cy = g(t) when g(t) is
polynomial, exponential, trig.

e In applications, g(t) is often “piece-wise continuous” meaning that it
consists of a finite number of pieces with jump discontinuities in
between. For example,

- | sin(wt) 0 <t <10,
9(t) = { 0 t > 10.

e These can be handled by previous techniques (modified) but it isn’t
pretty.



