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• Summary of 2x2 systems with constant coefficients.

• Nonhomogeneous example
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Nonhomogeneous case - example

• Salt water flows into a tank holding 10 L of water at a rate of 1 L/min 
with a concentration of 200 g/L. The well-mixed solution flows from that 
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takes the solution in the second tank back into the first at a rate of 2 L/
min. Finally, solution drains out of the second tank at a rate of 1 L/min.

•  Write down a system of equations in matrix form for the mass of salt in 
each tank.
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Nonhomogeneous case - example

• A “Method of undetermined coefficients” similar to what we saw for 
second order equations can be used for systems. 

• For this course, I’ll only test you on constant nonhomogeneous terms 
(like the previous example) in the context of mixing problems.
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• We know how to solve                                              when          is 
polynomial, exponential, trig.

• In applications,          is often “piece-wise continuous” meaning that it 
consists of a finite number of pieces with jump discontinuities in 
between. For example,

• These can be handled by previous techniques (modified) but it isn’t 
pretty.
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