
Today

• Forced vibrations

• Newton’s 2nd Law with external forcing.

• Forced mass-spring system without damping away from resonance.

• Forced mass-spring system without damping at resonance.

• Forced mass-spring system with damping.

• Review questions.
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• Newton’s 2nd Law:

ma = −kx− γv +F (t)

mx�� + γx� + kx = F (t)

spring force drag force applied/external force

• Forced vibrations - nonhomogeneous linear equation with constant 
coefficients.

• Building during earthquake, tuning fork near instrument, car over 
washboard road, polar bond under EM stimulus (classical, not 
quantum).
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• Plot of the amplitude of the particular solution as a function of     .ω

A =
F0

m(ω2
0 − ω2)

• Calculated:

• Plotted:

• Recall that for               , the 
amplitude grows without bound.

ω = ω0
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• With damping (on the blackboard)
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dt
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2
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Note that to convert from y(t) = 2 sin(2t) + 2 cos(2t)
to a single cos function we used the identity

cos(A + B) = cos(A) cos(B)− sin(A) sin(B)

with                 and                    so A = 2t B = −φ

cos(2t− φ) = cos(2t) cos(−φ)− sin(2t) sin(−φ)

cos(2t− φ) = cos(2t) cos(φ) + sin(2t) sin(φ)
or equivalently


