Today

- Shapes of solutions for distinct eigenvalues case.

Example

- Doc cam:
- $y(t)=C_{1}(1 ; 2) e^{-t}+C_{2}(1 ;-1) e^{t}$
- With ICs
- $y(0)=(2 ; 4)$
- $\mathrm{y}(0)=(2 ; 2)$
- $y(0)=(2 ; 1)$
- Desmos: https://www.desmos.com/calculator/tpelfq4nbe

Shapes of solution curves in the phase plane

- Which phase plane matches the general solution

$$
\mathbf{x}=C_{1} e^{3 t}\binom{1}{3}+C_{2} e^{-t}\binom{1}{-1} ?
$$

(A)

(E) Explain, please.

Plotting $x(t) v s y(t)$ compared to $t v s x(t)$

$$
\begin{aligned}
& \binom{x_{1}(0)}{x_{2}(0)}=\binom{4}{-6} \\
& \binom{x_{1}}{x_{2}}=\frac{7}{2} e^{-t}\binom{1}{-2}+\frac{1}{2} e^{3 t}\binom{1}{2} \\
& \xrightarrow[t]{\text { (t) }} \\
& C_{1}=\frac{7}{2}, C_{2}=\frac{1}{2}
\end{aligned}
$$

Shapes of solution curves in the phase plane

- Simple example to show general idea. $\mathrm{x}^{\prime}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right) \mathbf{x}$

$$
\begin{array}{lrl}
\mathbf{v}_{\mathbf{1}}=\binom{1}{0} & \frac{1}{\lambda_{2}} \ln \left(\frac{x_{2}}{C_{2}}\right) & =\frac{1}{\lambda_{1}} \ln \left(\frac{x_{1}}{C_{1}}\right) \\
\mathbf{v}_{\mathbf{2}}=\binom{0}{1} & \ln \left(\frac{x_{2}}{C_{2}}\right) & =\frac{\lambda_{2}}{\lambda_{1}} \ln \left(\frac{x_{1}}{C_{1}}\right) \\
\mathbf{x}=C_{1} e^{\lambda_{1} t}\binom{1}{0}+C_{2} e^{\lambda_{2} t}\binom{0}{1} & \ln \left(\frac{x_{2}}{C_{2}}\right) & =\ln \left(\frac{x_{1}}{C_{1}}\right)^{\lambda_{2}} \\
x_{1}(t) & =C_{1} e^{\lambda_{1} t} & t=\frac{1}{\lambda_{1}} \ln \left(\frac{x_{1}}{C_{1}}\right) \\
x_{2}(t) & =C_{2} e^{\lambda_{2} t} & t=\frac{1}{\lambda_{2}} \ln \left(\frac{x_{2}}{C_{2}}\right)
\end{array} x_{2}=C_{2}\left(\frac{x_{1}}{C_{1}}\right)^{\frac{\lambda_{2}}{\lambda_{1}}}
$$

- Can we plot solutions in $x_{1}-x_{2}$ plane by graphing x_{2} versus x_{1} ?

Shapes of solution curves in the phase plane

- Simple example to show general idea. $\mathbf{x}^{\prime}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right) \mathbf{x}$
$x_{2}=C_{2}\left(\frac{x_{1}}{C_{1}}\right)^{\frac{\lambda_{2}}{\lambda_{1}}}$
- For the shape of solutions, we need to know the sign and size of $\frac{\lambda_{2}}{\lambda_{1}}$.

$$
\begin{align*}
\lambda_{2} & =\lambda_{1} \\
x_{2} & =C x_{1}
\end{align*}
$$

$$
\begin{aligned}
& \lambda_{2}=\frac{1}{3} \lambda_{1} \\
& x_{2}=C \sqrt[3]{x_{1}}
\end{aligned}
$$

stays near x_{2} axis

Shapes of solution curves in the phase plane

- With more complicated solutions (evectors off-axis), tilt shape accordingly.
$\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2}$
- Going forward in time, the blue component shrinks slower than the green component grows so solutions appear closer to blue "axis" than to green "axis"

Shapes of solution curves in the phase plane

- Which phase plane matches the general solution

$$
\mathbf{x}=C_{1} e^{-3 t}\binom{1}{3}+C_{2} e^{-t}\binom{1}{-1} ?
$$

(B)

(D)

(C)
(E) Explain, please.

