Surname:

Given name: \qquad Tutorial TA (circle one): Thomas Sumy Serai Colin Xiaowei Dhananjay

This midterm has 6 pages including a blank page at the end for rough work. Answers must be justified and work must be shown. If a box is provided, place your answer in it.

1. [$\mathbf{5} \mathbf{~ p t s}$] Classify each of the following equations as linear (L) or non-linear (NL). Give the order of the equation. For any linear equation, state whether it is homogeneous (H) or non-homogeneous (NH); put a "-" for non-linear equations. For any non-linear equation, circle all terms that render it non-linear.

2. [$\mathbf{5} \mathbf{~ p t s}$] A tank initially contains $m_{0} \mathrm{~kg}$ of salt and a volume V litres of water. Saltwater with a concentration of $c_{0} \mathrm{~kg} /$ litre enters a tank at the rate r litres/minute. The solution is mixed and drains from the tank at the same rate (r litres/minute). Write down an Initial Value Problem (that is, a differential equation and an initial condition) for the mass of salt $m(t)$ in the tank as a function of time. You DO NOT need to solve it.

Do not write in these boxes - for marking purposes only.

3. Consider the equation

$$
\frac{d y}{d x}=\frac{\sqrt{x}}{y} .
$$

(a) $[4 \mathrm{pts}]$ Find the general solution to the equation.

General solution: $\frac{1}{2} y^{2}=\frac{2}{3} x^{3 / 2}+C$
(b) [2 pts] What is the particular solution that solves the initial condition $y(1)=-\frac{2}{\sqrt{3}}$?

$$
\begin{gathered}
\frac{1}{2}\left(-\frac{2}{\sqrt{3}}\right)^{2}=\frac{2}{3}(1)^{3 / 2}+C \\
\frac{1}{2} \cdot \frac{4}{3}=\frac{2}{3}+C \\
\frac{2}{3}=\frac{2}{3}+C \\
C=0
\end{gathered}
$$

$$
y= \pm \sqrt{\frac{4}{3} x^{3 / 2}+0}
$$

must choose - for
IC.

$$
y(x)=-\sqrt{\frac{4}{3} x^{3 / 2}}
$$

4. [4 pts] Find the general solution to the equation $y^{\prime \prime}+4 y=0$.

5. [6 pts] For each proposed $f(t)$, give the form of the particular solution that you would use to carry out the Method of Undetermined Coefficients to solve the equation $y^{\prime \prime}+4 y=f(t)$.

6. [$\mathbf{6} \mathbf{~ p t s] ~ F i n d ~ t h e ~ p a r t i c u l a r ~ s o l u t i o n ~ t h a t ~ s o l v e s ~ t h e ~ e q u a t i o n ~} y^{\prime \prime}+4 y=5 t e^{t}$.

Do not write in these boxes - for marking purposes only.
5:
7. For each of the following pairs of functions, show that they are either dependent or independent. Note that a Wronskian of zero does not ensure dependence - you have to show that a non-trivial linear combination of the functions adds to zero.
(a) $[\mathbf{3} \mathbf{p t s}] f(t)=e^{t}$ and $g(t)=t e^{t}$.

$$
\begin{aligned}
& \omega\left(e^{t}, t e^{t}\right)=e^{t}\left(t e^{t}+e^{t}\right)-e^{t} \cdot t e^{t} \\
&=t e^{2 t}+e^{2 t}-t e^{2 t}=e^{2 t} \neq 0 \\
& \text { Therefore, } e^{t} \text { and } t e^{t} \text { are } \\
& \text { Independent. }
\end{aligned}
$$

(b) [$\mathbf{3} \mathbf{~ p t s}] f(x)=\ln \left(x^{2}\right)$ and $g(x)=\ln \left(x^{3}\right)$.

$$
\begin{aligned}
& f(x)=\ln \left(x^{2}\right)=2 \ln x \\
& g(x)=\ln \left(x^{3}\right)=3 \ln x \\
& \begin{aligned}
& 3 f(x)-2 g(x)=3(2 \ln x)-2 \cdot(3 \ln x) \\
&=0 \\
& \text { Therefore, } f(x) \text { and } g(x) \text { are } \\
& \text { dependent }
\end{aligned} \text { }
\end{aligned}
$$

Do not write in these boxes - for marking purposes only.
8. (a) $[\mathbf{4} \mathbf{p t s}]$ Find the general solution to the equation

$$
I(x)=e^{S-\frac{1}{x} d x}=e^{-\ln x} \frac{y}{x}^{y^{\prime}-\frac{1}{-} y=\frac{1}{x}}
$$

$$
\frac{1}{x} y^{\prime}-\frac{1}{x^{2}} y=\frac{1}{x^{2}}
$$

$$
y(x)=\square \subset-1
$$

(b) [$\mathbf{2} \mathbf{p t s}$] Sketch integral curves of the equation (ie. solutions) for a few characteristic values of the arbitrary constant.

(c) $[\mathbf{1} \mathbf{~ p t s}]$ Give an example of an initial condition that cannot be solved.

Do not write in these boxes - for marking purposes only.

Work on this page will not be marked unless there is a note on a previous page indicating that this page should be checked.

