Today

- Office hour Jan 17 cancelled Jan 18 instead, 12-1pm
- Saltwater inflow example
- General solutions, independence of functions and the Wronskian
- Distinct roots of the characteristic equation
- Review of complex numbers
- Complex roots of the characteristic equation

- Saltwater with a concentration of 200 g/L flows into a tank at a rate 2 L/min. The tank starts with no salt in it and holds 10 L. The tank is well mixed and the mixed water drains out at the same rate as the inflow.
 - (a) Write down an IVP for the mass of salt in the tank as a function of time.
 - (b) What is the limiting mass of salt in the tank?

- Saltwater with a concentration of 200 g/L flows into a tank at a rate 2 L/min. The tank starts with no salt in it and holds 10 L. The tank is well mixed and the mixed water drains out at the same rate as the inflow.
 - (a) Write down an IVP for the mass of salt in the tank as a function of time.
 - (b) What is the limiting mass of salt in the tank?
- (a) The IVP is

(A)
$$m' = 200 - 2m$$
, $m(0) = 0$

(B)
$$m' = 400 - 2m$$
, $m(0) = 200$

(C)
$$m' = 400 - m/5$$
, $m(0) = 0$

(D)
$$m' = 200 - m/5$$
, $m(0) = 0$

(E)
$$m' = 400 - m/5$$
, $m(0) = 200$

- Saltwater with a concentration of 200 g/L flows into a tank at a rate 2 L/min. The tank starts with no salt in it and holds 10 L. The tank is well mixed and the mixed water drains out at the same rate as the inflow.
 - (a) Write down an IVP for the mass of salt in the tank as a function of time.
 - (b) What is the limiting mass of salt in the tank?
- (a) The IVP is

(A)
$$m' = 200 - 2m$$
, $m(0) = 0$

(B)
$$m' = 400 - 2m$$
, $m(0) = 200$

$$(C)$$
 m' = 400 - m/5, m(0) = 0

(D)
$$m' = 200 - m/5$$
, $m(0) = 0$

(E)
$$m' = 400 - m/5$$
, $m(0) = 200$

- Saltwater with a concentration of 200 g/L flows into a tank at a rate 2 L/min. The tank starts with no salt in it and holds 10 L. The tank is well mixed and the mixed water drains out at the same rate as the inflow.
 - (a) Write down an IVP for the mass of salt in the tank as a function of time.
 - (b) What is the limiting mass of salt in the tank?

- Saltwater with a concentration of 200 g/L flows into a tank at a rate 2 L/min. The tank starts with no salt in it and holds 10 L. The tank is well mixed and the mixed water drains out at the same rate as the inflow.
 - (a) Write down an IVP for the mass of salt in the tank as a function of time.
 - (b) What is the limiting mass of salt in the tank?
- (b) Directly from the equation (m' = 400 m/5), find an m for which m'=0.

- Saltwater with a concentration of 200 g/L flows into a tank at a rate 2 L/min. The tank starts with no salt in it and holds 10 L. The tank is well mixed and the mixed water drains out at the same rate as the inflow.
 - (a) Write down an IVP for the mass of salt in the tank as a function of time.
 - (b) What is the limiting mass of salt in the tank?
- (b) Directly from the equation (m' = 400 m/5), find an m for which m'=0.
 - m=2000. Called steady state a constant solution.

- Saltwater with a concentration of 200 g/L flows into a tank at a rate 2 L/min. The tank starts with no salt in it and holds 10 L. The tank is well mixed and the mixed water drains out at the same rate as the inflow.
 - (a) Write down an IVP for the mass of salt in the tank as a function of time.
 - (b) What is the limiting mass of salt in the tank?
- (b) Directly from the equation (m' = 400 m/5), find an m for which m'=0.
 - m=2000. Called steady state a constant solution.
 - What happens when m < 2000? ---> m' > 0.

- Saltwater with a concentration of 200 g/L flows into a tank at a rate 2 L/min. The tank starts with no salt in it and holds 10 L. The tank is well mixed and the mixed water drains out at the same rate as the inflow.
 - (a) Write down an IVP for the mass of salt in the tank as a function of time.
 - (b) What is the limiting mass of salt in the tank?
- (b) Directly from the equation (m' = 400 m/5), find an m for which m'=0.
 - m=2000. Called steady state a constant solution.
 - What happens when m < 2000? ---> m' > 0.
 - What happens when m > 2000? ---> m' < 0.

- Saltwater with a concentration of 200 g/L flows into a tank at a rate 2 L/min. The tank starts with no salt in it and holds 10 L. The tank is well mixed and the mixed water drains out at the same rate as the inflow.
 - (a) Write down an IVP for the mass of salt in the tank as a function of time.
 - (b) What is the limiting mass of salt in the tank?
- (b) Directly from the equation (m' = 400 m/5), find an m for which m'=0.
 - m=2000. Called steady state a constant solution.
 - What happens when m < 2000? ---> m' > 0.
 - What happens when m > 2000? ---> m' < 0.
 - Limiting mass: 2000 g (Long way: solve the eq. and let t→∞.)

Theorem 2.4.2 Let the functions f and $\frac{\partial f}{\partial y}$ be continuous in some rectangle $\alpha < t < \beta, \quad \gamma < y < \delta$ containing the point (t_0, y_0) . Then, in some interval $t_0 - h < t_0 < t_0 + h$ contained in $\alpha < t < \beta$, there is a unique solution $y = \phi(t)$ of the IVP

$$y' = f(t, y), \quad y(t_0) = y_0.$$

Theorem 2.4.2 Let the functions f and $\frac{\partial f}{\partial y}$ be continuous in some rectangle $\alpha < t < \beta, \quad \gamma < y < \delta$ containing the point (t_0, y_0) . Then, in some interval $t_0 - h < t_0 < t_0 + h$ contained in $\alpha < t < \beta$, there is a unique solution $y = \phi(t)$ of the IVP

$$y' = f(t, y), \quad y(t_0) = y_0.$$

A couple questions/examples to explore on your own:

Theorem 2.4.2 Let the functions f and $\frac{\partial f}{\partial y}$ be continuous in some rectangle $\alpha < t < \beta, \quad \gamma < y < \delta$ containing the point (t_0, y_0) . Then, in some interval $t_0 - h < t_0 < t_0 + h$ contained in $\alpha < t < \beta$, there is a unique solution $y = \phi(t)$ of the IVP

$$y' = f(t, y), \quad y(t_0) = y_0.$$

- A couple questions/examples to explore on your own:
 - Why don't we get a solution all the way to the ends of the t interval?
 - Example: $\frac{dy}{dt} = y^2, \quad y(0) = 1$

Theorem 2.4.2 Let the functions f and $\frac{\partial f}{\partial y}$ be continuous in some rectangle $\alpha < t < \beta, \quad \gamma < y < \delta$ containing the point (t_0, y_0) . Then, in some interval $t_0 - h < t_0 < t_0 + h$ contained in $\alpha < t < \beta$, there is a unique solution $y = \phi(t)$ of the IVP

$$y' = f(t, y), \quad y(t_0) = y_0.$$

- A couple questions/examples to explore on your own:
 - Why don't we get a solution all the way to the ends of the t interval?
 - Example: $\frac{dy}{dt} = y^2, \quad y(0) = 1$
 - How does a non-continuous RHS lead to more than one solution?

• Example:
$$\frac{dy}{dt} = \sqrt{y}, \quad y(0) = 0$$

• The general form for a second order linear equation:

$$y'' + p(t)y' + q(t)y = g(t)$$

• The general form for a second order linear equation:

$$y'' + p(t)y' + q(t)y = g(t)$$

The general form for a second order linear equation:

$$y'' + p(t)y' + q(t)y = g(t)$$

Now, an IVP requires two ICs:

$$y(0) = y_0, \quad y'(0) = v_0$$

The general form for a second order linear equation:

$$y'' + p(t)y' + q(t)y = g(t)$$

Now, an IVP requires two ICs:

$$y(0) = y_0, \quad y'(0) = v_0$$

- As with first order linear equations, we have homogeneous (g=0) and non-homogeneous second order linear equations.
- We'll start by considering the homogeneous case with constant coefficients:

$$ay'' + by' + cy = 0$$

$$ay'' + by' + cy = 0$$

 Suppose you already found a couple solutions, y₁(t) and y₂(t). This means that

$$ay'' + by' + cy = 0$$

 Suppose you already found a couple solutions, y₁(t) and y₂(t). This means that

$$ay'' + by' + cy = 0$$

 Suppose you already found a couple solutions, y₁(t) and y₂(t). This means that

$$ay_1'' + by_1' + cy_1 = 0$$
 and $ay_2'' + by_2' + cy_2 = 0$

$$ay'' + by' + cy = 0$$

 Suppose you already found a couple solutions, y₁(t) and y₂(t). This means that

$$ay_1'' + by_1' + cy_1 = 0$$
 and $ay_2'' + by_2' + cy_2 = 0$

$$ay'' + by' + cy = 0$$

 Suppose you already found a couple solutions, y₁(t) and y₂(t). This means that

$$ay_1'' + by_1' + cy_1 = 0$$
 and $ay_2'' + by_2' + cy_2 = 0$

$$a(C_1y_1)'' + b(C_1y_1)' + c(C_1y_1)$$

$$ay'' + by' + cy = 0$$

 Suppose you already found a couple solutions, y₁(t) and y₂(t). This means that

$$ay_1'' + by_1' + cy_1 = 0$$
 and $ay_2'' + by_2' + cy_2 = 0$

$$a(C_1y_1)'' + b(C_1y_1)' + c(C_1y_1)$$

$$= aC_1(y_1)'' + bC_1(y_1)' + cC_1(y_1)$$

$$= C_1(ay_1'' + by_1' + cy_1)$$

$$ay'' + by' + cy = 0$$

 Suppose you already found a couple solutions, y₁(t) and y₂(t). This means that

$$ay_1'' + by_1' + cy_1 = 0$$
 and $ay_2'' + by_2' + cy_2 = 0$

$$a(C_1y_1)'' + b(C_1y_1)' + c(C_1y_1)$$

$$= aC_1(y_1)'' + bC_1(y_1)' + cC_1(y_1)$$

$$= C_1(ay_1'' + by_1' + cy_1) = 0$$

(A)
$$y(t) = y_1(t)^2$$

(B)
$$y(t) = y_1(t) + y_2(t)$$

(C)
$$y(t) = y_1(t) y_2(t)$$

(D)
$$y(t) = y_1(t) / y_2(t)$$

(A)
$$y(t) = y_1(t)^2$$

$$(B) y(t) = y_1(t) + y_2(t)$$

(C)
$$y(t) = y_1(t) y_2(t)$$

(D)
$$y(t) = y_1(t) / y_2(t)$$

Which of the following functions are also solutions?

(A)
$$y(t) = y_1(t)^2$$

$$(B) y(t) = y_1(t) + y_2(t)$$

(C)
$$y(t) = y_1(t) y_2(t)$$

(D)
$$y(t) = y_1(t) / y_2(t)$$

• In fact, the following are all solutions: $C_1y_1(t)$, $C_2y_2(t)$, $C_1y_1(t)+C_2y_2(t)$.

(A)
$$y(t) = y_1(t)^2$$

$$(B) y(t) = y_1(t) + y_2(t)$$

(C)
$$y(t) = y_1(t) y_2(t)$$

(D)
$$y(t) = y_1(t) / y_2(t)$$

- In fact, the following are all solutions: $C_1y_1(t)$, $C_2y_2(t)$, $C_1y_1(t)+C_2y_2(t)$.
- With first order equations, the arbitrary constant appeared through an integration step in our methods. With second order equations, not always.

(A)
$$y(t) = y_1(t)^2$$

$$(B) y(t) = y_1(t) + y_2(t)$$

(C)
$$y(t) = y_1(t) y_2(t)$$

(D)
$$y(t) = y_1(t) / y_2(t)$$

- In fact, the following are all solutions: $C_1y_1(t)$, $C_2y_2(t)$, $C_1y_1(t)+C_2y_2(t)$.
- With first order equations, the arbitrary constant appeared through an integration step in our methods. With second order equations, not always.
- Instead, find two independent solutions, y₁(t), y₂(t), by whatever method.

(A)
$$y(t) = y_1(t)^2$$

$$(B) y(t) = y_1(t) + y_2(t)$$

(C)
$$y(t) = y_1(t) y_2(t)$$

(D)
$$y(t) = y_1(t) / y_2(t)$$

- In fact, the following are all solutions: $C_1y_1(t)$, $C_2y_2(t)$, $C_1y_1(t)+C_2y_2(t)$.
- With first order equations, the arbitrary constant appeared through an integration step in our methods. With second order equations, not always.
- Instead, find two independent solutions, y₁(t), y₂(t), by whatever method.
- The general solution will be $y(t) = C_1y_1(t) + C_2y_2(t)$.

One case where the arbitrary constants DO appear as we calculate:

$$y'' + y' = 0$$

One case where the arbitrary constants DO appear as we calculate:

$$y'' + y' = 0$$

$$y' + y = C_1$$

$$e^t y' + e^t y = C_1 e^t$$

$$(e^t y)' = C_1 e^t$$

$$e^t y = C_1 e^t + C_2$$

$$y = C_1 + C_2 e^{-t}$$

One case where the arbitrary constants DO appear as we calculate:

$$y'' + y' = 0$$

$$y' + y = C_1$$

$$e^t y' + e^t y = C_1 e^t$$

$$(e^t y)' = C_1 e^t$$

$$e^t y = C_1 e^t + C_2$$

$$y = C_1 + C_2 e^{-t}$$

 More common would be that we find solutions y(t) = 1 and y(t)= e^{-t} and simply write down

$$y = C_1 + C_2 e^{-t}$$

• So in general how do we find the two independent solutions y₁ and y₂?

- So in general how do we find the two independent solutions y₁ and y₂?
- Exponential solutions seem to be common so let's assume y(t)=e^{rt} and see if that gets us anything useful..

- So in general how do we find the two independent solutions y₁ and y₂?
- Exponential solutions seem to be common so let's assume y(t)=e^{rt} and see if that gets us anything useful..
- Solve y'' + y' = 0 by assuming $y(t) = e^{rt}$ for some constant r.

- So in general how do we find the two independent solutions y₁ and y₂?
- Exponential solutions seem to be common so let's assume y(t)=e^{rt} and see if that gets us anything useful..
- Solve y'' + y' = 0 by assuming $y(t) = e^{rt}$ for some constant r.

$$(e^{rt})'' + (e^{rt})' = 0 \qquad \emptyset$$

- So in general how do we find the two independent solutions y₁ and y₂?
- Exponential solutions seem to be common so let's assume y(t)=e^{rt} and see if that gets us anything useful..
- Solve y'' + y' = 0 by assuming $y(t) = e^{rt}$ for some constant r.

$$(e^{rt})'' + (e^{rt})' = 0$$
 $r^2 e^{rt} + r e^{rt} = 0$
 $r^2 + r = 0$
 $r(r+1) = 0$
 $y = C_1 e^0 + C_2 e^{-t}$
 $y = C_1 + C_2 e^{-t}$
 $y = C_1 + C_2 e^{-t}$

• Solve y'' - 4y = 0 subject to the ICs y(0) = 3, y'(0) = 2 .

• Solve y'' - 4y = 0 subject to the ICs y(0) = 3, y'(0) = 2 .

(A)
$$y(t) = C_1 e^{2t} + C_2 e^{-2t}$$

(B)
$$y(t) = 2e^{2t} + e^{-2t}$$

(C)
$$y(t) = \frac{7}{4}e^{4t} + \frac{5}{4}e^{-4t}$$

(D)
$$y(t) = e^{2t} + 2e^{-2t}$$

(E)
$$y(t) = C_1 e^{4t} + C_2 e^{-4t}$$

(A)
$$y(t) = C_1 e^{2t} + C_2 e^{-2t}$$

$$\Rightarrow$$
 (B) $y(t) = 2e^{2t} + e^{-2t}$

(C)
$$y(t) = \frac{7}{4}e^{4t} + \frac{5}{4}e^{-4t}$$

(D)
$$y(t) = e^{2t} + 2e^{-2t}$$

(E)
$$y(t) = C_1 e^{4t} + C_2 e^{-4t}$$

(A)
$$y(t) = C_1 e^{2t} + C_2 e^{-2t}$$
 (4)

$$(e^{rt})'' - 4(e^{rt}) = 0$$

$$\Rightarrow$$
 (B) $y(t) = 2e^{2t} + e^{-2t}$

(C)
$$y(t) = \frac{7}{4}e^{4t} + \frac{5}{4}e^{-4t}$$

(D)
$$y(t) = e^{2t} + 2e^{-2t}$$

(E)
$$y(t) = C_1 e^{4t} + C_2 e^{-4t}$$

(A)
$$y(t) = C_1 e^{2t} + C_2 e^{-2t}$$

$$\Rightarrow$$
 (B) $y(t) = 2e^{2t} + e^{-2t}$

(C)
$$y(t) = \frac{7}{4}e^{4t} + \frac{5}{4}e^{-4t}$$

(D)
$$y(t) = e^{2t} + 2e^{-2t}$$

(E)
$$y(t) = C_1 e^{4t} + C_2 e^{-4t}$$

$$(e^{rt})'' - 4(e^{rt}) = 0$$

$$r^2(e^{rt}) - 4(e^{rt}) = 0$$

(A)
$$y(t) = C_1 e^{2t} + C_2 e^{-2t}$$

$$\Rightarrow$$
 (B) $y(t) = 2e^{2t} + e^{-2t}$

(C)
$$y(t) = \frac{7}{4}e^{4t} + \frac{5}{4}e^{-4t}$$

(D)
$$y(t) = e^{2t} + 2e^{-2t}$$

(E)
$$y(t) = C_1 e^{4t} + C_2 e^{-4t}$$

$$(e^{rt})'' - 4(e^{rt}) = 0$$

$$r^2(e^{rt}) - 4(e^{rt}) = 0$$

$$r^2 - 4 = 0$$

(A)
$$y(t) = C_1 e^{2t} + C_2 e^{-2t}$$

$$\Rightarrow$$
 (B) $y(t) = 2e^{2t} + e^{-2t}$

(C)
$$y(t) = \frac{7}{4}e^{4t} + \frac{5}{4}e^{-4t}$$

(D)
$$y(t) = e^{2t} + 2e^{-2t}$$

(E)
$$y(t) = C_1 e^{4t} + C_2 e^{-4t}$$

$$(e^{rt})'' - 4(e^{rt}) = 0$$

$$r^2(e^{rt}) - 4(e^{rt}) = 0$$

$$r^2 - 4 = 0$$

$$r = 2, -2$$

(A)
$$y(t) = C_1 e^{2t} + C_2 e^{-2t}$$

$$\Rightarrow$$
 (B) $y(t) = 2e^{2t} + e^{-2t}$

(C)
$$y(t) = \frac{7}{4}e^{4t} + \frac{5}{4}e^{-4t}$$

(D)
$$y(t) = e^{2t} + 2e^{-2t}$$

(E)
$$y(t) = C_1 e^{4t} + C_2 e^{-4t}$$

$$(e^{rt})'' - 4(e^{rt}) = 0$$

$$r^2(e^{rt}) - 4(e^{rt}) = 0$$

$$r^2 - 4 = 0$$

$$r = 2, -2$$

$$y(t) = C_1 e^{2t} + C_2 e^{-2t}$$

• Solve $y^{\prime\prime}-4y=0$ subject to the ICs $y(0)=3,y^{\prime}(0)=2$.

(E) $y(t) = C_1 e^{4t} + C_2 e^{-4t}$

(A)
$$y(t) = C_1 e^{2t} + C_2 e^{-2t}$$
 $(e^{rt})'' - 4(e^{rt}) = 0$
(B) $y(t) = 2e^{2t} + e^{-2t}$ $r^2(e^{rt}) - 4(e^{rt}) = 0$
(C) $y(t) = \frac{7}{4}e^{4t} + \frac{5}{4}e^{-4t}$ $r = 2, -2$
(D) $y(t) = e^{2t} + 2e^{-2t}$ $y(t) = C_1 e^{2t} + C_2 e^{-2t}$

 $y(0) = C_1 + C_2 = 3$

(A)
$$y(t) = C_1 e^{2t} + C_2 e^{-2t}$$

$$\Rightarrow$$
 (B) $y(t) = 2e^{2t} + e^{-2t}$

(C)
$$y(t) = \frac{7}{4}e^{4t} + \frac{5}{4}e^{-4t}$$

(D)
$$y(t) = e^{2t} + 2e^{-2t}$$

(E)
$$y(t) = C_1 e^{4t} + C_2 e^{-4t}$$

$$(e^{rt})'' - 4(e^{rt}) = 0$$

 $r^2(e^{rt}) - 4(e^{rt}) = 0$

$$r^2 - 4 = 0$$

$$r = 2, -2$$

$$y(t) = C_1 e^{2t} + C_2 e^{-2t}$$

$$y(0) = C_1 + C_2 = 3$$

$$y'(0) = 2C_1 - 2C_2 = 2$$

$$ar^2 + br + c = 0$$

• For the general case, ay'' + by' + cy = 0, by assuming $y(t) = e^{rt}$ we get the characteristic equation:

$$ar^2 + br + c = 0$$

There are three cases.

$$ar^2 + br + c = 0$$

- There are three cases.
 - Two distinct real roots: $b^2 4ac > 0$. $(r_1 \neq r_2)$

$$ar^2 + br + c = 0$$

- There are three cases.
 - Two distinct real roots: b^2 4ac > 0. $(r_1 \neq r_2)$
 - A repeated real root: b^2 4ac = 0.

$$ar^2 + br + c = 0$$

- There are three cases.
 - Two distinct real roots: b^2 4ac > 0. $(r_1 \neq r_2)$
 - A repeated real root: b^2 4ac = 0.
 - Two complex roots: b² 4ac < 0.

$$ar^2 + br + c = 0$$

- There are three cases.
 - Two distinct real roots: b^2 4ac > 0. $(r_1 \neq r_2)$
 - A repeated real root: b^2 4ac = 0.
 - Two complex roots: b² 4ac < 0.
- For case i, we get $y_1(t) = e^{r_1 t}$ and $y_2(t) = e^{r_2 t}$.

$$ar^2 + br + c = 0$$

- There are three cases.
 - Two distinct real roots: b^2 4ac > 0. $(r_1 \neq r_2)$
 - A repeated real root: b^2 4ac = 0.
 - Two complex roots: b² 4ac < 0.
- For case i, we get $y_1(t) = e^{r_1 t}$ and $y_2(t) = e^{r_2 t}$.
- Do our two solutions cover all possible ICs? That is, can we use them to form a general solution?

$$y(t) = C_1 e^{2t+3} + C_2 e^{2t-3}$$

$$y(t) = C_1 e^{2t+3} + C_2 e^{2t-3}$$

$$y(0) = C_1 e^3 + C_2 e^{-3} = y_0$$

$$y(t) = C_1 e^{2t+3} + C_2 e^{2t-3}$$
$$y(0) = C_1 e^3 + C_2 e^{-3} = y_0$$
$$y'(0) = 2C_1 e^3 + 2C_2 e^{-3} = v_0$$

• Example: Suppose $y_1(t) = e^{2t+3}$ and $y_2(t) = e^{2t-3}$ are two solutions to some equation. Can we solve ANY initial condition $y(0) = y_0, \ y'(0) = v_0$ with these two solutions?

$$y(t) = C_1 e^{2t+3} + C_2 e^{2t-3}$$
$$y(0) = C_1 e^3 + C_2 e^{-3} = y_0$$
$$y'(0) = 2C_1 e^3 + 2C_2 e^{-3} = v_0$$

• Solve this system for C₁, C₂...

$$y(t) = C_1 e^{2t+3} + C_2 e^{2t-3}$$
$$y(0) = C_1 e^3 + C_2 e^{-3} = y_0$$
$$y'(0) = 2C_1 e^3 + 2C_2 e^{-3} = v_0$$

- Solve this system for C₁, C₂...
- Can't do it. Why?

$$y(t) = C_1 e^{2t+3} + C_2 e^{2t-3}$$
$$y(0) = C_1 e^3 + C_2 e^{-3} = y_0$$
$$y'(0) = 2C_1 e^3 + 2C_2 e^{-3} = v_0$$

- Solve this system for C₁, C₂...
- Can't do it. Why? $\begin{pmatrix} e^3 & e^{-3} \\ 2e^3 & 2e^{-3} \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} y_0 \\ v_0 \end{pmatrix}$

• Example: Suppose $y_1(t) = e^{2t+3}$ and $y_2(t) = e^{2t-3}$ are two solutions to some equation. Can we solve ANY initial condition $y(0) = y_0, \ y'(0) = v_0$ with these two solutions?

$$y(t) = C_1 e^{2t+3} + C_2 e^{2t-3}$$
$$y(0) = C_1 e^3 + C_2 e^{-3} = y_0$$
$$y'(0) = 2C_1 e^3 + 2C_2 e^{-3} = v_0$$

Solve this system for C₁, C₂...

• Can't do it. Why?
$$\begin{pmatrix} e^3 & e^{-3} \\ 2e^3 & 2e^{-3} \end{pmatrix} \begin{pmatrix} C_1 \\ C_2 \end{pmatrix} = \begin{pmatrix} y_0 \\ v_0 \end{pmatrix}$$

$$\det \begin{pmatrix} e^3 & e^{-3} \\ 2e^3 & 2e^{-3} \end{pmatrix} = 0$$

 For any two solutions to some linear ODE, to ensure that we have a general solution, we need to check that

$$\det \begin{pmatrix} y_1(0) & y_2(0) \\ y_1'(0) & y_2'(0) \end{pmatrix} = y_1(0)y_2'(0) - y_1'(0)y_2(0) \neq 0$$

 For any two solutions to some linear ODE, to ensure that we have a general solution, we need to check that

$$\det \begin{pmatrix} y_1(0) & y_2(0) \\ y_1'(0) & y_2'(0) \end{pmatrix} = y_1(0)y_2'(0) - y_1'(0)y_2(0) \neq 0$$

 For any two solutions to some linear ODE, to ensure that we have a general solution, we need to check that

$$\det \begin{pmatrix} y_1(0) & y_2(0) \\ y'_1(0) & y'_2(0) \end{pmatrix} = y_1(0)y'_2(0) - y'_1(0)y_2(0) \neq 0$$

• For ICs other than t₀=0, we require that

$$y_1(t_0)y_2'(t_0) - y_1'(t_0)y_2(t_0) \neq 0$$

 For any two solutions to some linear ODE, to ensure that we have a general solution, we need to check that

$$\det \begin{pmatrix} y_1(0) & y_2(0) \\ y'_1(0) & y'_2(0) \end{pmatrix} = y_1(0)y'_2(0) - y'_1(0)y_2(0) \neq 0$$

• For ICs other than t₀=0, we require that

$$y_1(t_0)y_2'(t_0) - y_1'(t_0)y_2(t_0) \neq 0$$

This quantity is called the Wronskian.

$$W(y_1, y_2)(t) = y_1(t)y_2'(t) - y_1'(t)y_2(t)$$

• Two functions $y_1(t)$ and $y_2(t)$ are linearly independent provided that the only way that $C_1y_1(t) + C_2y_2(t) = 0$ for all values of t is when $C_1=C_2=0$.

• Two functions $y_1(t)$ and $y_2(t)$ are linearly independent provided that the only way that $C_1y_1(t) + C_2y_2(t) = 0$ for all values of t is when $C_1=C_2=0$.

e.g. $y_1(t) = e^{2t+3}$ and $y_2(t) = e^{2t-3}$ are not independent.

Find values of $C_1 \neq 0$ and $C_2 \neq 0$ so that $C_1 y_1(t) + C_2 y_2(t) = 0$.

(A)
$$C_1 = e^{-2t-3}, C_2 = -e^{-2t+3}$$

(B)
$$C_1 = e^{-2t+3}, C_2 = -e^{-2t-3}$$

(C)
$$C_1 = e^{-3}, C_2 = e^3$$

(D)
$$C_1 = e^{-3}, C_2 = -e^3$$

(E)
$$C_1 = e^3$$
, $C_2 = -e^{-3}$

• Two functions $y_1(t)$ and $y_2(t)$ are linearly independent provided that the only way that $C_1y_1(t) + C_2y_2(t) = 0$ for all values of t is when $C_1=C_2=0$.

e.g.
$$y_1(t) = e^{2t+3}$$
 and $y_2(t) = e^{2t-3}$ are not independent.

Find values of $C_1 \neq 0$ and $C_2 \neq 0$ so that $C_1 y_1(t) + C_2 y_2(t) = 0$.

(A)
$$C_1 = e^{-2t-3}, C_2 = -e^{-2t+3}$$

(B)
$$C_1 = e^{-2t+3}, C_2 = -e^{-2t-3}$$

(C)
$$C_1 = e^{-3}, C_2 = e^3$$

$$ightharpoonup (D)$$
 $C_1 = e^{-3}, C_2 = -e^3$

(E)
$$C_1 = e^3$$
, $C_2 = -e^{-3}$

• Two functions $y_1(t)$ and $y_2(t)$ are linearly independent provided that the only way that $C_1y_1(t) + C_2y_2(t) = 0$ for all values of t is when $C_1=C_2=0$.

e.g.
$$y_1(t) = e^{2t+3}$$
 and $y_2(t) = e^{2t-3}$ are not independent.

 The Wronskian is defined for any two functions, even if they aren't solutions to an ODE.

$$W(y_1, y_2)(t) = y_1(t)y_2'(t) - y_1'(t)y_2(t)$$

• Two functions $y_1(t)$ and $y_2(t)$ are linearly independent provided that the only way that $C_1y_1(t) + C_2y_2(t) = 0$ for all values of t is when $C_1=C_2=0$.

e.g.
$$y_1(t) = e^{2t+3}$$
 and $y_2(t) = e^{2t-3}$ are not independent.

 The Wronskian is defined for any two functions, even if they aren't solutions to an ODE.

$$W(y_1, y_2)(t) = y_1(t)y_2'(t) - y_1'(t)y_2(t)$$

 If the Wronskian is nonzero for some t, the functions are linearly independent.

• Two functions $y_1(t)$ and $y_2(t)$ are linearly independent provided that the only way that $C_1y_1(t) + C_2y_2(t) = 0$ for all values of t is when $C_1=C_2=0$.

e.g.
$$y_1(t) = e^{2t+3}$$
 and $y_2(t) = e^{2t-3}$ are not independent.

 The Wronskian is defined for any two functions, even if they aren't solutions to an ODE.

$$W(y_1, y_2)(t) = y_1(t)y_2'(t) - y_1'(t)y_2(t)$$

- If the Wronskian is nonzero for some t, the functions are linearly independent.
- If $y_1(t)$ and $y_2(t)$ are solutions to an ODE and the Wronskian is nonzero then they are independent and

$$y(t) = C_1 y_1(t) + C_2 y_2(t)$$

is the general solution. We call $y_1(t)$ and $y_2(t)$ a fundamental set of solutions and we can use them to solve any IC.

• So for case i (distinct roots), can we form a general solution from

$$y_1(t) = e^{r_1 t}$$
 and $y_2(t) = e^{r_2 t}$?

· So for case i (distinct roots), can we form a general solution from

$$y_1(t) = e^{r_1 t}$$
 and $y_2(t) = e^{r_2 t}$?

So for case i (distinct roots), can we form a general solution from

$$y_1(t) = e^{r_1 t}$$
 and $y_2(t) = e^{r_2 t}$?

$$W(e^{r_1t}, e^{r_2t})(t) = e^{r_1t}r_2e^{r_2t} - r_1e^{r_1t}e^{r_2t}$$

· So for case i (distinct roots), can we form a general solution from

$$y_1(t) = e^{r_1 t}$$
 and $y_2(t) = e^{r_2 t}$?

$$W(e^{r_1t}, e^{r_2t})(t) = e^{r_1t}r_2e^{r_2t} - r_1e^{r_1t}e^{r_2t}$$
$$= (r_1 - r_2)e^{r_1t}e^{r_2t}$$

· So for case i (distinct roots), can we form a general solution from

$$y_1(t) = e^{r_1 t}$$
 and $y_2(t) = e^{r_2 t}$?

$$W(e^{r_1t}, e^{r_2t})(t) = e^{r_1t}r_2e^{r_2t} - r_1e^{r_1t}e^{r_2t}$$
$$= (r_1 - r_2)e^{r_1t}e^{r_2t} \neq 0$$

· So for case i (distinct roots), can we form a general solution from

$$y_1(t) = e^{r_1 t}$$
 and $y_2(t) = e^{r_2 t}$?

Must check the Wronskian:

$$W(e^{r_1t}, e^{r_2t})(t) = e^{r_1t}r_2e^{r_2t} - r_1e^{r_1t}e^{r_2t}$$
$$= (r_1 - r_2)e^{r_1t}e^{r_2t} \neq 0$$

So yes! $y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$ is the general solution.