Today

- The geometry of homogeneous and nonhomogeneous matrix equations
- Solving nonhomogeneous equations
 - Method of undetermined coefficients

Second order, linear, constant coeff, **non**homogeneous (3.5)

 Our next goal is to figure out how to find solutions to nonhomogeneous equations like this one:

$$y'' - 6y' + 8y = \sin(2t)$$

 But first, a bit more on the connections between matrix algebra and differential equations . . .

Some connections to linear (matrix) algebra

• An mxn matrix is a gizmo that takes an n-vector and returns an m-vector: $\overline{y} = A\overline{x}$

• It is called a linear operator because it has the following properties:

$$A(c\overline{x}) = cA\overline{x}$$
$$A(\overline{x} + \overline{y}) = A\overline{x} + A\overline{y}$$

 Not all operators work on vectors. Derivative operators take a function and return a new function. For example,

$$z = L[y] = \frac{d^2y}{dt^2} - 2\frac{dy}{dt} + y$$

This one is linear because

$$L[cy] = cL[y]$$
$$L[y+z] = L[y] + L[z]$$

Note: y, z are functions of t and c is a constant.

Some connections to linear (matrix) algebra

A homogeneous matrix equation has the form

$$A\overline{x} = \overline{0}$$

A non-homogeneous matrix equation has the form

$$A\overline{x} = \overline{b}$$

A homogeneous differential equation has the form

$$L[y] = 0$$

A non-homogeneous differential equation has the form

$$L[y] = g(t)$$

- ullet The matrix equation $A\overline{x}=\overline{0}$ could have (depending on A)
 - (A) no solutions.

(D) an n-parameter family of solutions.

Choose the answer that is incorrect.

Possibilities:

$$\overline{x} = C_1 \begin{pmatrix} 1\overline{x} \\ \overline{x} + 1 \end{pmatrix} \begin{pmatrix} 1\overline{x} \\ C_1 \\ 1 \end{pmatrix} \begin{pmatrix} 0 \\ 2 \\ 1 \end{pmatrix}$$

ullet Example 1. Solve the equation $A\overline{x}=\overline{0}$ where

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & -2 \\ 2 & 1 & 1 \end{pmatrix}$$
 Each equation describes a plane.

Row reduction gives

$$A \sim \begin{pmatrix} 1 & 0 & -1/3 \\ 0 & 1 & 5/3 \\ 0 & 0 & 0 \end{pmatrix} \qquad \begin{array}{l} \text{In this case, only} \\ \text{two of them really} \\ \text{matter.} \end{array}$$

• so
$$x_1-\frac{1}{3}x_3=0$$
 and $x_2+\frac{5}{3}x_3=0$ and x_3 can be whatever (because it doesn't have a leading one).

- ullet Example 1. Solve the equation $A\overline{x}=0$.
- \bullet so $x_1-\frac{1}{3}x_3=0$ and $x_2+\frac{5}{3}x_3=0$ and x_3 can be whatever.

$$x_1 = \frac{1}{3}x_3$$

$$x_1 = \frac{1}{3}C$$

$$x_2 = -\frac{5}{3}x_3 \qquad x_2 = -\frac{5}{3}C$$

$$x_2 = -\frac{5}{3}C$$

ullet Thus, the solution can be written as $\overline{x} = \frac{C'}{3} \begin{pmatrix} 1 \\ -5 \end{pmatrix}$.

• Example 2. Solve the equation $A\overline{x}=\overline{0}$ where

$$A = \begin{pmatrix} 1 & -2 & 1 \\ 2 & -4 & 2 \\ -1 & 2 & -1 \end{pmatrix}$$

Row reduction gives

$$A \sim \begin{pmatrix} 1 & -2 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

ullet so $x_1-2x_2+x_3=0$ and both x_2 and x_3 can be whatever.

$$\overline{x} = C_1 \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

• Example 2. Solve the equation $A\overline{x}=\overline{0}$ where

$$\overline{x} = C_1 \begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix} + C_2 \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

ullet Example 3. Solve the equation $A\overline{x}=\overline{b}$ where

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & -1 & -2 \\ 2 & 1 & 1 \end{pmatrix} \quad \text{and} \quad \overline{b} = \begin{pmatrix} 2 \\ 0 \\ 2 \end{pmatrix}.$$

Row reduction gives

$$\begin{pmatrix}
1 & 0 & -1/3 & 2/3 \\
0 & 1 & 5/3 & 2/3 \\
0 & 0 & 0
\end{pmatrix}$$

$$ullet$$
 so $x_1-rac{1}{3}x_3=rac{2}{3}$ and $x_2+rac{5}{3}x_3=rac{2}{3}$ and x_3 can be whatever.

- \bullet Example 3. Solve the equation $A\overline{x}=\overline{b}$.
- \bullet so $x_1-\frac{1}{3}x_3=\frac{2}{3}$ and $x_2+\frac{5}{3}x_3=\frac{2}{3}$ and x_3 can be whatever.

$$x_1 = \frac{1}{3}x_3 + \frac{2}{3} \qquad x_2 = -\frac{5}{3}x_3 + \frac{2}{3}$$

$$\overline{x} = \frac{C_{\prime}}{3} \begin{pmatrix} 1 \\ -5 \\ 3 \end{pmatrix} + \begin{pmatrix} 2/3 \\ 2/3 \\ 0 \end{pmatrix}$$

the general solution to the homogeneous problem

one particular solution to nonhomogeneous problem

Solutions to nonhomogeneous differential equations

- To solve a nonhomogeneous differential equation:
 - Find the general solution to the associated homogeneous problem, y_h(t).
 first order DE

3. The general solution to the nonhomogeneous problem is their sum:

$$y = y_h + y_p = C_1 y_1 + C_2 y_2 + y_p$$

• For step 2, try "Method of undetermined coefficients"...

second order DE

- Example 4. Define the operator L[y]=y''+2y'-3y. Find the general solution to $L[y]=e^{2t}$. That is, $y''+2y'-3y=e^{2t}$.
 - Step 1: Solve the associated homogeneous equation

$$y'' + 2y' - 3y = 0.$$
$$y_h(t) = C_1 e^t + C_2 e^{-3t}$$

ullet Step 2: What do you have to plug in to $L[\ \cdot\]$ to get e^{2t} out?

A is an undetermined coefficient (until you determine it).

- Example 4. Define the operator L[y]=y''+2y'-3y. Find the general solution to $L[y]=e^{2t}$. That is, $y''+2y'-3y=e^{2t}$.
 - Summarizing:
 - We know that, for any C₁ and C₂,

$$L[C_1 e^t + C_2 e^{-3t}] = 0$$

We also know that

$$L[Ae^{2t}] = 5Ae^{2t}$$

• Finally, by linearity, we know that

$$L[C_1e^t + C_2e^{-3t} + Ae^{2t}] = 0 + 5Ae^{2t}$$

So what's left to do to find our general solution? Pick A =?1/5.

- Example 5. Find the general solution to the equation $y'' 4y = e^t$.
 - What is the solution to the associated homogeneous equation?

$$\Rightarrow$$
 (A) $y_h(t) = C_1 e^{2t} + C_2 e^{-2t}$

(B)
$$y_h(t) = C_1 \cos(2t) + C_2 \sin(2t)$$

(C)
$$y_h(t) = C_1 e^{2t} + C_2 t e^{2t}$$

(D)
$$y_h(t) = C_1 \cos(2t) + C_2 \sin(2t) + e^t$$

(E) Don't know.

- Example 5. Find the general solution to the equation $y'' 4y = e^t$.
 - What is the form of the particular solution?

(A)
$$y_p(t) = Ae^{2t}$$

(B)
$$y_p(t) = Ae^{-2t}$$

$$(C)$$
 $y_p(t) = Ae^t$

(D)
$$y_p(t) = Ate^t$$

(E) Don't know

- Example 5. Find the general solution to the equation $y'' 4y = e^t$.
 - ullet What is the value of A that gives the particular solution (Ae^t) ?
 - (A) A = 1
 - (B) A = 3
 - (C) A = 1/3
 - (D) A = -1/3
 - (E) Don't know.

- Example 7. Find the general solution to the equation $y'' 4y = e^{2t}$.
 - What is the solution to the associated homogeneous equation?

- Example 7. Find the general solution to the equation $y'' 4y = e^{2t}$.
 - What is the form of the particular solution?

$$(A) \quad y_p(t) = Ae^{2t}$$

(B)
$$y_p(t) = Ae^{-2t}$$

$$\uparrow$$
 (C) $y_p(t) = Ate^{2t}$

(D)
$$y_p(t) = Ae^t$$

(E)
$$y_p(t) = Ate^t$$

$$(Ae^{2t})'' - 4Ae^{2t} = 0!$$

 Simpler example in which the RHS is a solution to the homogeneous problem.

$$y' - y = e^{t}$$

$$e^{-t}y' - e^{-t}y = 1$$

$$y = (te^{t}) + Ce^{t}$$

General rule: when your guess at y_p makes LHS=0, try multiplying it by t₁9

- Example 7. Find the general solution to the equation $y'' 4y = e^{2t}$.
 - ullet What is the value of A that gives the particular solution (Ate^{2t}) ?

(A)
$$A = 1$$

(B)
$$A = 4$$

(C)
$$A = -4$$

$$(D) A = 1/4$$

(E)
$$A = -1/4$$

$$(Ate^{2t})' = Ae^{2t} + 2Ate^{2t}$$

$$(Ate^{2t})'' = 2Ae^{2t} + 2Ae^{2t} + 4Ate^{2t}$$

$$(Ate^{2t})'' - 4(Ate^{2t}) = 4Ae^{2t}$$

Need:
$$=e^{2t}$$

- Example 8. Find the general solution to $y'' 4y = \cos(2t)$.
 - What is the form of the particular solution?

$$\uparrow$$
 (A) $y_p(t) = A\cos(2t)$

(B)
$$y_p(t) = A\sin(2t)$$

$$(C) \quad y_p(t) = A\cos(2t) + B\sin(2t)$$

(D)
$$y_p(t) = t(A\cos(2t) + B\sin(2t))$$

(E)
$$y_p(t) = e^{2t} (A\cos(2t) + B\sin(2t))$$

Challenge: What small change to the DE makes (D) correct?

- Example 8. Find the general solution to $y'' + y' 4y = \cos(2t)$.
 - What is the form of the particular solution?

(A)
$$y_p(t) = A\cos(2t)$$

(B)
$$y_p(t) = A\sin(2t)$$

$$(C) \quad y_p(t) = A\cos(2t) + B\sin(2t)$$

(D)
$$y_p(t) = t(A\cos(2t) + B\sin(2t))$$

(E)
$$y_p(t) = e^{2t} (A\cos(2t) + B\sin(2t))$$

- Example 9. Find the general solution to $y'' 4y = t^3$.
 - What is the form of the particular solution?

(A)
$$y_p(t) = At^3$$

(B)
$$y_p(t) = At^3 + Bt^2 + Ct$$

$$(C)$$
 $y_p(t) = At^3 + Bt^2 + Ct + D$

(D)
$$y_p(t) = At^3 + Be^{2t} + Ce^{-2t}$$

(E) Don't know.

waste of time including solution to homogeneous eq.

• When RHS is sum of terms:

$$y'' - 4y = \cos(2t) + t^3$$

$$y_p(t) = A\cos(2t) + B\sin(2t) + Ct^3 + Dt^2 + Et + F$$

- ullet Example 10. Find the general solution to $y^{\prime\prime}+2y^{\prime}=e^{2t}+t^3$.
 - What is the form of the particular solution?

(A)
$$y_p(t) = Ae^{2t} + Bt^3 + Ct^2 + Dt$$

(B)
$$y_p(t) = Ae^{2t} + Bt^3 + Ct^2 + Dt + E$$

$$(C) \ y_p(t) = Ae^{2t} + (Bt^4 + Ct^3 + Dt^2 + Et) \\ y_p(t) = Ae^{2t} + t(Bt^3 + Ct^2 + Dt + E)$$

$$(D) \ y_p(t) = Ae^{2t} + Be^{-2t} + Ct^3 + Dt^2 + Et + F$$

(E)
$$y_p(t) = Ae^{2t} + Bte^{2t} + Ct^3 + Dt^2 + Et + F$$

For each wrong answer, for what DE is it the correct form?

- Example 11. Find the general solution to $y'' 4y = t^3 e^{2t}$.
 - What is the form of the particular solution?

(A)
$$y_p(t) = (At^3 + Bt^2 + Ct + D)e^{2t}$$

(B)
$$y_p(t) = (At^3 + Bt^2 + Ct)e^{2t}$$

(C)
$$y_p(t) = (At^3 + Bt^2 + Ct)e^{2t} + (Dt^3 + Et^2 + Ft)e^{-2t}$$

$$(D) y_p(t) = (At^4 + Bt^3 + Ct^2 + Dt)e^{2t}$$
$$y_p(t) = t(At^3 + Bt^2 + Ct + D)e^{2t}$$

(E)
$$y_p(t) = (At^4 + Bt^3 + Ct^2 + Dt + E)e^{2t}$$

- Summary finding a particular solution to L[y] = g(t).
 - Include all functions that are part of the g(t) family (e.g. cos and sin)
 - If part of the g(t) family is a solution to the homogeneous (h-)problem, use t x (g(t) family).
 - If t x (part of the g(t) family), is a solution to the h-problem, use t² x (g
 (t) family).
 - For sums, group terms into families and include a term for each.
 - For products of families, use the above rules and multiply them.
 - If your guess includes a solution to the h-problem, you may as well remove it as it won't survive L[] so you won't be able to determine its undetermined coefficient.

27