Today

- The geometry of homogeneous and nonhomogeneous matrix equations
- Solving nonhomogeneous equations
- Method of undetermined coefficients

Second order, linear, constant coeff, nonhomogeneous (3.5)

- Our next goal is to figure out how to find solutions to nonhomogeneous equations like this one:

$$
y^{\prime \prime}-6 y^{\prime}+8 y=\sin (2 t)
$$

- But first, a bit more on the connections between matrix algebra and differential equations...

Some connections to linear (matrix) algebra

- An $m \times n$ matrix is a gizmo that takes an n-vector and returns an $m-$ vector:

$$
\bar{y}=A \bar{x}
$$

- It is called a linear operator because it has the following properties:

$$
\begin{aligned}
A(c \bar{x}) & =c A \bar{x} \\
A(\bar{x}+\bar{y}) & =A \bar{x}+A \bar{y}
\end{aligned}
$$

- Not all operators work on vectors. Derivative operators take a function and return a new function. For example,

$$
z=L[y]=\frac{d^{2} y}{d t^{2}}-2 \frac{d y}{d t}+y
$$

- This one is linear because

$$
\begin{aligned}
L[c y] & =c L[y] \\
L[y+z] & =L[y]+L[z]
\end{aligned}
$$

Note: y, z are functions of t and c is a constant.

Some connections to linear (matrix) algebra

- A homogeneous matrix equation has the form

$$
A \bar{x}=\overline{0}
$$

- A non-homogeneous matrix equation has the form

$$
A \bar{x}=\bar{b}
$$

- A homogeneous differential equation has the form

$$
L[y]=0
$$

- A non-homogeneous differential equation has the form

$$
L[y]=g(t)
$$

Solutions to homogeneous matrix equations

- The matrix equation $A \bar{x}=\overline{0}$ could have (depending on A)
(A) no solutions.
\Rightarrow
(B) exactly one solution.
\Rightarrow
(C) a one-parameter family of solutions.
\Rightarrow
(D) an n-parameter family of solutions.

Possibilities:

Choose the answer that is incorrect.

$$
\left.\bar{x}=C_{1}\left(\begin{array}{c}
1 \bar{x} \\
\bar{x} \mp \\
1
\end{array}\right)=\begin{array}{cc}
\phi & 1 \\
C_{+} & \left(\begin{array} { l }
{ 1 } \\
{ C _ { 2 } }
\end{array} \left(\begin{array}{l}
0 \\
1
\end{array}\right.\right. \\
2 \\
1
\end{array}\right)
$$

Solutions to homogeneous matrix equations

- Example 1. Solve the equation $A \bar{x}=\overline{0}$ where

$$
A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
1 & -1 & -2 \\
2 & 1 & 1
\end{array}\right)
$$

Each equation describes a plane.

- Row reduction gives

$$
A \sim\left(\begin{array}{ccc}
1 & 0 & -1 / 3 \\
0 & 1 & 5 / 3 \\
0 & 0 & 0
\end{array}\right)
$$

In this case, only two of them really matter.

- so $x_{1}-\frac{1}{3} x_{3}=0$ and $x_{2}+\frac{5}{3} x_{3}=0$ and x_{3} can be whatever (because it doesn't have a leading one).

Solutions to homogeneous matrix equations

- Example 1. Solve the equation $A \bar{x}=\overline{0}$.
- so $x_{1}-\frac{1}{3} x_{3}=0$ and $x_{2}+\frac{5}{3} x_{3}=0$ and x_{3} can be whatever.

$$
\begin{aligned}
x_{1} & =\frac{1}{3} x_{3} \\
x_{2} & =-\frac{5}{3} x_{3} \\
x_{3} & =C
\end{aligned}
$$

- Thus, the solution can be written as $\bar{x}=\frac{C_{\prime}}{3}\left(\begin{array}{c}1 \\ -5 \\ 3\end{array}\right)$.

Solutions to homogeneous matrix equations

- Example 2. Solve the equation $A \bar{x}=\overline{0}$ where

$$
A=\left(\begin{array}{ccc}
1 & -2 & 1 \\
2 & -4 & 2 \\
-1 & 2 & -1
\end{array}\right)
$$

- Row reduction gives

$$
A \sim\left(\begin{array}{ccc}
1 & -2 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

- so $x_{1}-2 x_{2}+x_{3}=0$ and both x_{2} and x_{3} can be whatever.

$$
\bar{x}=C_{1}\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)+C_{2}\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right)
$$

Solutions to homogeneous matrix equations

- Example 2. Solve the equation $A \bar{x}=\overline{0}$ where

Solutions to non-homogeneous matrix equations

- Example 3. Solve the equation $A \bar{x}=\bar{b}$ where

$$
A=\left(\begin{array}{ccc}
1 & 2 & 3 \\
1 & -1 & -2 \\
2 & 1 & 1
\end{array}\right) \quad \text { and } \quad \bar{b}=\left(\begin{array}{l}
2 \\
0 \\
2
\end{array}\right)
$$

- Row reduction gives

$$
\left(\begin{array}{ccc|c}
1 & 0 & -1 / 3 & 2 / 3 \\
0 & 1 & 5 / 3 & 2 / 3 \\
0 & 0 & 0 & 0
\end{array}\right)
$$

- so $x_{1}-\frac{1}{3} x_{3}=\frac{2}{3}$ and $x_{2}+\frac{5}{3} x_{3}=\frac{2}{3}$ and x_{3} can be whatever.

Solutions to non-homogeneous matrix equations

- Example 3. Solve the equation $A \bar{x}=\bar{b}$.
- so $x_{1}-\frac{1}{3} x_{3}=\frac{2}{3}$ and $x_{2}+\frac{5}{3} x_{3}=\frac{2}{3}$ and x_{3} can be whatever.

$$
x_{1}=\frac{1}{3} x_{3}+\frac{2}{3} \quad x_{2}=-\frac{5}{3} x_{3}+\frac{2}{3}
$$

$$
\bar{x}=\frac{G_{\prime}^{\prime \prime}}{3}\left(\begin{array}{c}
1 \\
-5 \\
3
\end{array}\right)
$$

the general solution to the homogeneous problem

one particular solution to nonhomogeneous problem

Solutions to nonhomogeneous differential equations

- To solve a nonhomogeneous differential equation:

1. Find the general solution to the associated homogeneous problem, $\mathrm{y}_{\mathrm{h}}(\mathrm{t})$.

2. Find a particular solution to the nonhomogeneous problem, $y_{p}(t)$.

3. The general solution to the nonhomogeneous problem is their sum:

$$
y=y_{h}+y_{p}=C_{1} y_{1}+C_{2} y_{2}+y_{p}
$$

- For step 2, try "Method of undetermined coefficients"...

Method of undetermined coefficients (3.5)

- Example 4. Define the operator $L[y]=y^{\prime \prime}+2 y^{\prime}-3 y$. Find the general solution to $L[y]=e^{2 t}$. That is, $y^{\prime \prime}+2 y^{\prime}-3 y=e^{2 t}$.
- Step 1: Solve the associated homogeneous equation

$$
\begin{gathered}
y^{\prime \prime}+2 y^{\prime}-3 y=0 \\
y_{h}(t)=C_{1} e^{t}+C_{2} e^{-3 t}
\end{gathered}
$$

- Step 2: What do you have to plug in to $L[\cdot]$ to get $e^{2 t}$ out?
- $\operatorname{Try} y_{p}(t)=A e^{2 t}$.
- $L\left[y_{p}(t)\right]=L\left[A e^{2 t}\right]= \begin{cases}\text { (A) } 5 e^{2 t} & \text { (C) } 4 e^{2 t} \\ \text { (B) } 5 A e^{2 t} & \text { (D) } 4 A e^{2 t}\end{cases}$
- A is an undetermined coefficient (until you determine it).

Method of undetermined coefficients (3.5)

- Example 4. Define the operator $L[y]=y^{\prime \prime}+2 y^{\prime}-3 y$. Find the general solution to $L[y]=e^{2 t}$. That is, $y^{\prime \prime}+2 y^{\prime}-3 y=e^{2 t}$.
- Summarizing:
- We know that, for any C_{1} and C_{2},

$$
L\left[C_{1} e^{t}+C_{2} e^{-3 t}\right]=0
$$

- We also know that

$$
L\left[A e^{2 t}\right]=5 A e^{2 t}
$$

- Finally, by linearity, we know that

$$
L\left[C_{1} e^{t}+C_{2} e^{-3 t}+A e^{2 t}\right]=0+5 A e^{2 t}
$$

- So what's left to do to find our general solution? Pick $\mathrm{A}=$ =?1/5.

Method of undetermined coefficients (3.5)

- Example 5. Find the general solution to the equation $y^{\prime \prime}-4 y=e^{t}$.
-What is the solution to the associated homogeneous equation?

$$
\widehat{(\mathrm{A})} y_{h}(t)=C_{1} e^{2 t}+C_{2} e^{-2 t}
$$

(B) $y_{h}(t)=C_{1} \cos (2 t)+C_{2} \sin (2 t)$
(C) $y_{h}(t)=C_{1} e^{2 t}+C_{2} t e^{2 t}$
(D) $y_{h}(t)=C_{1} \cos (2 t)+C_{2} \sin (2 t)+e^{t}$
(E) Don't know.

Method of undetermined coefficients (3.5)

- Example 5. Find the general solution to the equation $y^{\prime \prime}-4 y=e^{t}$.
- What is the form of the particular solution?

> (A) $y_{p}(t)=A e^{2 t}$
> (B) $y_{p}(t)=A e^{-2 t}$
$\hat{v}(\mathrm{C}) y_{p}(t)=A e^{t}$
(D) $y_{p}(t)=A t e^{t}$
(E) Don't know

Method of undetermined coefficients (3.5)

- Example 5. Find the general solution to the equation $y^{\prime \prime}-4 y=e^{t}$.
- What is the value of A that gives the particular solution $\left(A e^{t}\right)$?
(A) $A=1$
(B) $A=3$
(C) $A=1 / 3$
\hat{s} (D) $A=-1 / 3$
(E) Don't know.

Method of undetermined coefficients (3.5)

- Example 7. Find the general solution to the equation $y^{\prime \prime}-4 y=e^{2 t}$.
- What is the solution to the associated homogeneous equation?

$$
\widehat{(A)} y_{h}(t)=C_{1} e^{2 t}+C_{2} e^{-2 t}
$$

$$
\text { (B) } y_{h}(t)=C_{1} \cos (2 t)
$$

(C) $y_{h}(t)$

Method of undetermined coefficients (3.5)

- Example 7. Find the general solution to the equation $y^{\prime \prime}-4 y=e^{2 t}$.
-What is the form of the particular solution?

$$
\begin{aligned}
\text { (A) } y_{p}(t) & =A e^{2 t} \\
\text { (B) } y_{p}(t) & =A e^{-2 t} \\
\text { (C) } y_{p}(t) & =A t e^{2 t} \\
\text { (D) } y_{p}(t) & =A e^{t} \\
\text { (E) } y_{p}(t) & =A t e^{t}
\end{aligned}
$$

$$
\left(A e^{2 t}\right)^{\prime \prime}-4 A e^{2 t}=0!
$$

- Simpler example in which the RHS is a solution to the homogeneous problem.

$$
\begin{gathered}
y^{\prime}-y=e^{t} \\
e^{-t} y^{\prime}-e^{-t} y=1 \\
y=t e^{t}+C e^{t}
\end{gathered}
$$

- General rule: when your guess at y_{p} makes LHS=0, try multiplying it by t_{19}

Method of undetermined coefficients (3.5)

- Example 7. Find the general solution to the equation $y^{\prime \prime}-4 y=e^{2 t}$.
- What is the value of A that gives the particular solution $\left(A t e^{2 t}\right)$?
(A) $A=1$

$$
\left(A t e^{2 t}\right)^{\prime}=A e^{2 t}+2 A t e^{2 t}
$$

(B) $A=4$
(C) $A=-4$
\hat{y} (D) $A=1 / 4$

$$
\begin{aligned}
& \left(A t e^{2 t}\right)^{\prime \prime}=2 A e^{2 t}+2 A e^{2 t}+4 A t e^{2 t} \\
& \left(A t e^{2 t}\right)^{\prime \prime}-4\left(A t e^{2 t}\right)=4 A e^{2 t}
\end{aligned}
$$

(E) $A=-1 / 4$ Need: $\quad=e^{2 t}$

Method of undetermined coefficients (3.5)

- Example 8. Find the general solution to $y^{\prime \prime}-4 y=\cos (2 t)$.
-What is the form of the particular solution?
Δ (A) $\quad y_{p}(t)=A \cos (2 t)$
(B) $y_{p}(t)=A \sin (2 t)$
$\boldsymbol{\omega}(\mathrm{C}) y_{p}(t)=A \cos (2 t)+B \sin (2 t)$
(D) $y_{p}(t)=t(A \cos (2 t)+B \sin (2 t))$
(E) $\quad y_{p}(t)=e^{2 t}(A \cos (2 t)+B \sin (2 t))$

Challenge: What small change to the DE makes (D) correct?

Method of undetermined coefficients (3.5)

- Example 8. Find the general solution to $y^{\prime \prime}+y^{\prime}-4 y=\cos (2 t)$.
-What is the form of the particular solution?
(A) $\quad y_{p}(t)=A \cos (2 t)$
(B) $\quad y_{p}(t)=A \sin (2 t)$
(C) $\quad y_{p}(t)=A \cos (2 t)+B \sin (2 t)$
(D) $\quad y_{p}(t)=t(A \cos (2 t)+B \sin (2 t))$
(E) $\quad y_{p}(t)=e^{2 t}(A \cos (2 t)+B \sin (2 t))$

Method of undetermined coefficients (3.5)

- Example 9. Find the general solution to $y^{\prime \prime}-4 y=t^{3}$.
-What is the form of the particular solution?
(A) $\quad y_{p}(t)=A t^{3}$
(B) $\quad y_{p}(t)=A t^{3}+B t^{2}+C t$
$\hat{\Delta}$ (C) $y_{p}(t)=A t^{3}+B t^{2}+C t+D$
(D) $y_{p}(t)=A t^{3}+B e^{2 t}+C e^{-2 t}$
(E) Don't know. waste of time including solution to homogeneous eq.

Method of undetermined coefficients (3.5)

- When RHS is sum of terms:

$$
\begin{gathered}
y^{\prime \prime}-4 y=\cos (2 t)+t^{3} \\
y_{p}(t)=A \cos (2 t)+B \sin (2 t)+C t^{3}+D t^{2}+E t+F
\end{gathered}
$$

Method of undetermined coefficients (3.5)

- Example 10. Find the general solution to $y^{\prime \prime}+2 y^{\prime}=e^{2 t}+t^{3}$.
-What is the form of the particular solution?

$$
\begin{aligned}
\text { (A) } y_{p}(t) & =A e^{2 t}+B t^{3}+C t^{2}+D t \\
\text { (B) } y_{p}(t) & =A e^{2 t}+B t^{3}+C t^{2}+D t+E \\
\text { (C) } y_{p}(t) & =A e^{2 t}+\left(B t^{4}+C t^{3}+D t^{2}+E t\right) \\
y_{p}(t) & =A e^{2 t}+t\left(B t^{3}+C t^{2}+D t+E\right) \\
\text { (D) } y_{p}(t) & =A e^{2 t}+B e^{-2 t}+C t^{3}+D t^{2}+E t+F \\
\text { (E) } y_{p}(t) & =A e^{2 t}+B t e^{2 t}+C t^{3}+D t^{2}+E t+F
\end{aligned}
$$

For each wrong answer, for what DE is it the correct form?

Method of undetermined coefficients (3.5)

- Example 11. Find the general solution to $y^{\prime \prime}-4 y=t^{3} e^{2 t}$.
-What is the form of the particular solution?

$$
\begin{aligned}
\text { (A) } y_{p}(t) & =\left(A t^{3}+B t^{2}+C t+D\right) e^{2 t} \\
\text { (B) } y_{p}(t) & =\left(A t^{3}+B t^{2}+C t\right) e^{2 t} \\
\text { (C) } y_{p}(t) & =\left(A t^{3}+B t^{2}+C t\right) e^{2 t} \\
& +\left(D t^{3}+E t^{2}+F t\right) e^{-2 t} \\
\text { (D) } y_{p}(t) & =\left(A t^{4}+B t^{3}+C t^{2}+D t\right) e^{2 t} \\
y_{p}(t) & =t\left(A t^{3}+B t^{2}+C t+D\right) e^{2 t} \\
\text { (E) } y_{p}(t) & =\left(A t^{4}+B t^{3}+C t^{2}+D t+E\right) e^{2 t}
\end{aligned}
$$

Method of undetermined coefficients (3.5)

- Summary - finding a particular solution to $\mathrm{L}[\mathrm{y}]=\mathrm{g}(\mathrm{t})$.
- Include all functions that are part of the $g(t)$ family (e.g. cos and \sin)
- If part of the $g(t)$ family is a solution to the homogeneous (h-)problem, use $t \times(g(t)$ family).
- If $\mathrm{t} \times$ (part of the $\mathrm{g}(\mathrm{t})$ family), is a solution to the h -problem, use $\mathrm{t}^{2} \times(\mathrm{g}$ (t) family).
- For sums, group terms into families and include a term for each.
- For products of families, use the above rules and multiply them.
- If your guess includes a solution to the h-problem, you may as well remove it as it won't survive L[] so you won't be able to determine its undetermined coefficient.

