
Today

• Comment on pre-lecture problems

• Finish up with integrating factors

• The structure of solutions

• Separable equations
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Which technique should you use to find...

(A) Substitution

(B) Integration by parts

(C) Partial fraction decomposition

(D) Trig substitution
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Method of integrating factors

• Given that

• if you’re given the equation

• you can rewrite is as 

• so the solution is                              or equivalently                         . 
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• Solve the equation                                                     (not brute force checking).

(A) 

(B) 

(C) 

(D) 

(E)  Don’t know.

t2
dy
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+ 2ty(t) = sin(t)

general solution 
(although that’s not 

obvious)

a particular solution 

y(t) = − cos(t) + C
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t2
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y(t) = sin(t) + C
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Initial conditions (IC) and initial value problems (IVP)

• An initial condition is an added constraint on a solution. 

• e.g. Solve                                                    subject to the IC                     .t2
dy

dt
+ 2ty(t) = sin(t) y(π) = 0

y(t) =
1 + cos(t)

t2

y(t) = −1− cos(t)
t2

y(t) = −1 + cos(t)
t2

y(t) = −C + cos(π)
π2

(A) 

(B) 

(C) 

(D)

• An Initial Value Problem (IVP) is a ODE together with an IC.

(E)  Don’t know.



Method of integrating factors

• What function should we multiply through by to make the LHS a perfect 
product rule?
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• What function should we multiply through by to make the LHS a perfect 
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Technical definition of integrating factor

• For the general first order linear ODE

a(t)y� + b(t)y = g(t)

• Divide through by a(t) and define p(t) = b(t) / a(t) and q(t) = g(t) / a(t) :

y� + p(t)y = q(t)

• The function that, when multiplied through, make the LHS a perfect product 
rule is called the integrating factor.
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The structure of solutions

• When the equation is of the form (called homogeneous)

• the solution is

• where           

• is the integrating factor.
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The structure of solutions

• When the equation is of the form (called nonhomogeneous)

• the solution is                

• where k(t) involves no arbitrary constants.

• Think about this expression as

• Directly analogous to solving the vector equations                  and                 .

dy

dt
+ p(t)y = q(t)

y(t) = k(t) + Cµ(t)−1

y(t) = yp(t) + yh(t)

Ax = 0 Ax = b
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