Today

e Fourier Series examples - even and odd extensions, other symmetries

e Using Fourier Series to solve the Diffusion Equation
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—ven and odd extensions

e For a function f(x) defined on [O,L], the even extension of f(x) is the

function f( ) for 0< 7 < I,
T or ~N L ,
fe(aj): { f(—gj) for — L <z <0.
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Using Fourier Series to solve the Diffusion Equation

uy = 4u
t o lf[‘s; (X) j\:ﬁm
u(0,t) =u(2,t) =0 /
—
u(x,0) = x Y A Y 3\
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