Today

- Fourier Series examples - even and odd extensions, other symmetries
- Using Fourier Series to solve the Diffusion Equation

Examples - calculate the Fourier Series

Examples - calculate the Fourier Series

Examples - calculate the Fourier Series

$$
g(x)=\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}
$$

Examples - calculate the Fourier Series

$$
\begin{aligned}
g(x) & =\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L} \\
& =\sum_{k=1}^{\infty} a_{2 k-1} \cos \frac{(2 k-1) \pi x}{L}
\end{aligned}
$$

Examples - calculate the Fourier Series

$$
\begin{aligned}
g(x) & =\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L} \\
& =\sum_{k=1}^{\infty} a_{2 k-1} \cos \frac{(2 k-1) \pi x}{L} \\
& =1-\frac{8}{\pi^{2}} \sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}} \cos \frac{(2 k-1) \pi x}{2}
\end{aligned}
$$

Examples - calculate the Fourier Series

$$
\begin{aligned}
g(x) & =\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L} \\
& =\sum_{k=1}^{\infty} a_{2 k-1} \cos \frac{(2 k-1) \pi x}{L} \\
& =1-\frac{8}{\pi^{2}} \sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}} \cos \frac{(2 k-1) \pi x}{2}
\end{aligned}
$$

$$
b_{n}=\frac{(-1)^{n+1} 4}{n \pi}
$$

Examples - calculate the Fourier Series

$$
\begin{aligned}
g(x) & =\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L} \\
& =\sum_{k=1}^{\infty} a_{2 k-1} \cos \frac{(2 k-1) \pi x}{L} \\
& =1-\frac{8}{\pi^{2}} \sum_{k=1}^{\infty} \frac{1}{(2 k-1)^{2}} \cos \frac{(2 k-1) \pi x}{2}
\end{aligned}
$$

$$
b_{n}=\frac{(-1)^{n+1} 4}{n \pi}
$$

$$
h(x)=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \frac{n \pi x}{2}
$$

Even and odd extensions

- For a function $f(x)$ defined on $[0, L]$, the even extension of $f(x)$ is the function

$$
f_{e}(x)=\left\{\begin{array}{cl}
f(x) & \text { for } 0 \leq x \leq L, \\
f(-x) & \text { for }-L \leq x<0 .
\end{array}\right.
$$

Even and odd extensions

- For a function $f(x)$ defined on $[0, L]$, the even extension of $f(x)$ is the function

$$
f_{e}(x)=\left\{\begin{array}{cl}
f(x) & \text { for } 0 \leq x \leq L, \\
f(-x) & \text { for }-L \leq x<0 .
\end{array}\right.
$$

- For a function $f(x)$ defined on $[0, L]$, the odd extension of $f(x)$ is the function

$$
f_{o}(x)=\left\{\begin{array}{cl}
f(x) & \text { for } 0 \leq x \leq L, \\
-f(-x) & \text { for }-L \leq x<0 .
\end{array}\right.
$$

Even and odd extensions

- For a function $f(x)$ defined on $[0, L]$, the even extension of $f(x)$ is the function

$$
f_{e}(x)=\left\{\begin{array}{cl}
f(x) & \text { for } 0 \leq x \leq L, \\
f(-x) & \text { for }-L \leq x<0 .
\end{array}\right.
$$

- For a function $f(x)$ defined on $[0, L]$, the odd extension of $f(x)$ is the function

$$
f_{o}(x)=\left\{\begin{array}{cl}
f(x) & \text { for } 0 \leq x \leq L, \\
-f(-x) & \text { for }-L \leq x<0 .
\end{array}\right.
$$

- Because these functions are even/odd, their Fourier Series have a couple simplifying features:

$$
\begin{array}{ll}
f_{e}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L} & a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x \\
f_{o}(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} & b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
\end{array}
$$

Even and odd extensions

- For a function $f(x)$ defined on $[0, L]$, the even extension of $f(x)$ is the function

$$
f_{e}(x)=\left\{\begin{array}{cl}
f(x) & \text { for } 0 \leq x \leq L, \\
f(-x) & \text { for }-L \leq x<0 .
\end{array}\right.
$$

- For a function $f(x)$ defined on $[0, L]$, the odd extension of $f(x)$ is the function

$$
f_{o}(x)=\left\{\begin{array}{cl}
f(x) & \text { for } 0 \leq x \leq L, \\
-f(-x) & \text { for }-L \leq x<0 .
\end{array}\right.
$$

- Because these functions are even/odd, their Fourier Series have a couple simplifying features:

$$
\begin{array}{ll}
f_{e}\left(x_{n}\right)=\frac{\sqrt{x_{0}}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L} & a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x \\
f_{o}(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} & b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
\end{array}
$$

Even and odd extensions

- For a function $f(x)$ defined on $[0, L]$, the even extension of $f(x)$ is the function

$$
f_{e}(x)=\left\{\begin{array}{cl}
f(x) & \text { for } 0 \leq x \leq L \\
f(-x) & \text { for }-L \leq x<0 .
\end{array}\right.
$$

- For a function $f(x)$ defined on $[0, L]$, the odd extension of $f(x)$ is the function

$$
f_{o}(x)=\left\{\begin{array}{cl}
f(x) & \text { for } 0 \leq x \leq L, \\
-f(-x) & \text { for }-L \leq x<0 .
\end{array}\right.
$$

- Because these functions are even/odd, their Fourier Series have a couple simplifying features:

$$
\begin{array}{ll}
f_{e}\left(x_{\boldsymbol{N}}\right)_{0} \frac{\sqrt{n} x_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L} & a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x \\
f_{o}\left(x_{0}=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}\right. & b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
\end{array}
$$

Even and odd extensions

- For a function $f(x)$ defined on $[0, L]$, the even extension of $f(x)$ is the function

$$
f_{e}(x)=\left\{\begin{array}{cl}
f(x) & \text { for } 0 \leq x \leq L, \\
f(-x) & \text { for }-L \leq x<0 .
\end{array}\right.
$$

- For a function $f(x)$ defined on $[0, L]$, the odd extension of $f(x)$ is the function

$$
f_{o}(x)=\left\{\begin{array}{cl}
f(x) & \text { for } 0 \leq x \leq L, \\
-f(-x) & \text { for }-L \leq x<0 .
\end{array}\right.
$$

- Because these functions are even/odd, their Fourier Series have a couple simplifying features:

$$
\begin{array}{ll}
f_{e}\left(x_{\boldsymbol{N}}\right)_{0} \frac{\sqrt{n} x_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L} & a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x \\
f_{o}\left(x_{0}=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}\right. & b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
\end{array}
$$

Fourier Series for functions with other symmetries

- Find the Fourier Sine Series for $f(x)$:

Fourier Series for functions with other symmetries

- Find the Fourier Sine Series for $f(x)$:
- Because we want the sine series, we use the odd extension.

Fourier Series for functions with other symmetries

- Find the Fourier Sine Series for $f(x)$:
- Because we want the sine series, we use the odd extension.
- The Fourier Series for the odd extension has $a_{n}=0$ because of
 the symmetry about $x=0$.

Fourier Series for functions with other symmetries

- Find the Fourier Sine Series for $f(x)$:
- Because we want the sine series, we use the odd extension.
- The Fourier Series for the odd extension has $a_{n}=0$ because of
 the symmetry about $x=0$.
- What other symmetries does f have?

Fourier Series for functions with other symmetries

- Find the Fourier Sine Series for $f(x)$:
- Because we want the sine series, we use the odd extension.
- The Fourier Series for the odd extension has $a_{n}=0$ because of
 the symmetry about $x=0$.
- What other symmetries does f have?

Fourier Series for functions with other symmetries

- Find the Fourier Sine Series for $f(x)$:
- Because we want the sine series, we use the odd extension.
- The Fourier Series for the odd extension has $a_{n}=0$ because of
 the symmetry about $x=0$.
- What other symmetries does f have?

Fourier Series for functions with other symmetries

- Find the Fourier Sine Series for $f(x)$:
- Because we want the sine series, we use the odd extension.
- The Fourier Series for the odd extension has $a_{n}=0$ because of
 the symmetry about $x=0$.
- What other symmetries does f have?

Fourier Series for functions with other symmetries

- Find the Fourier Sine Series for $f(x)$:
- Because we want the sine series, we use the odd extension.
- The Fourier Series for the odd extension has $a_{n}=0$ because of
 the symmetry about $x=0$.
- What other symmetries does f have?

Fourier Series for functions with other symmetries

- Find the Fourier Sine Series for $f(x)$:
- Because we want the sine series, we use the odd extension.
- The Fourier Series for the odd extension has $a_{n}=0$ because of
 the symmetry about $x=0$.
- What other symmetries does f have?

Fourier Series for functions with other symmetries

- Find the Fourier Sine Series for $f(x)$:
- Because we want the sine series, we use the odd extension.
- The Fourier Series for the odd extension has $a_{n}=0$ because of the symmetry about $x=0$.
- What other symmetries does f have?

$$
\begin{aligned}
& f(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} \\
& b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
\end{aligned}
$$

Fourier Series for functions with other symmetries

- Find the Fourier Sine Series for $f(x)$:
- Because we want the sine series, we use the odd extension.
- The Fourier Series for the odd extension has $a_{n}=0$ because of the symmetry about $x=0$.
- What other symmetries does f have?

$$
\begin{aligned}
& f(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} \\
& b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
\end{aligned}
$$

Fourier Series for functions with other symmetries

- Find the Fourier Sine Series for $f(x)$:
- Because we want the sine series, we use the odd extension.
- The Fourier Series for the odd extension has $a_{n}=0$ because of the symmetry about $x=0$.
- What other symmetries does f have?

$$
\begin{array}{ll}
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} & b_{1}=0 \\
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x &
\end{array}
$$

Fourier Series for functions with other symmetries

- Find the Fourier Sine Series for $f(x)$:
- Because we want the sine series, we use the odd extension.
- The Fourier Series for the odd extension has $a_{n}=0$ because of the symmetry about $x=0$.
- What other symmetries does f have?

$$
\begin{array}{ll}
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} & b_{1}=0 \\
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x &
\end{array}
$$

Fourier Series for functions with other symmetries

- Find the Fourier Sine Series for $f(x)$:
- Because we want the sine series, we use the odd extension.
- The Fourier Series for the odd extension has $a_{n}=0$ because of the symmetry about $x=0$.
- What other symmetries does f have?

$$
\begin{aligned}
& f(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} \\
& b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
\end{aligned}
$$

$$
b_{1}=0
$$

$$
b_{2} \neq 0
$$

Fourier Series for functions with other symmetries

- Find the Fourier Sine Series for $f(x)$:
- Because we want the sine series, we use the odd extension.
- The Fourier Series for the odd extension has $a_{n}=0$ because of the symmetry about $x=0$.
- What other symmetries does f have?

$$
\begin{aligned}
& f(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} \\
& b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
\end{aligned}
$$

$$
b_{1}=0
$$

$$
b_{2} \neq 0
$$

Fourier Series for functions with other symmetries

- Find the Fourier Sine Series for $f(x)$:
- Because we want the sine series, we use the odd extension.
- The Fourier Series for the odd extension has $a_{n}=0$ because of the symmetry about $x=0$.
- What other symmetries does f have?

$$
\begin{array}{ll}
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} & b_{1}=0 \\
b_{2} \neq 0 \\
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x & b_{3}=0
\end{array}
$$

Fourier Series for functions with other symmetries

- Find the Fourier Sine Series for $f(x)$:
- Because we want the sine series, we use the odd extension.
- The Fourier Series for the odd extension has $a_{n}=0$ because of the symmetry about $x=0$.
- What other symmetries does f have?

$$
\begin{array}{ll}
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} & b_{1}=0 \\
b_{2} \neq 0 \\
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x & b_{3}=0
\end{array}
$$

Fourier Series for functions with other symmetries

- Find the Fourier Sine Series for $f(x)$:
- Because we want the sine series, we use the odd extension.
- The Fourier Series for the odd extension has $a_{n}=0$ because of the symmetry about $x=0$.
- What other symmetries does f have?

$$
\begin{array}{ll}
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} & b_{1}=0 \\
b_{2} \neq 0 \\
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x & b_{3}=0 \\
b_{4}=0
\end{array}
$$

Fourier Series for functions with other symmetries

- Find the Fourier Sine Series for $f(x)$:
- Because we want the sine series, we use the odd extension.
- The Fourier Series for the odd extension has $a_{n}=0$ because of the symmetry about $x=0$.
- What other symmetries does f have?

$$
\begin{array}{ll}
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} & b_{1}=0 \\
b_{2} \neq 0 \\
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x & b_{3}=0 \\
b_{4}=0
\end{array}
$$

- $\mathrm{b}_{\mathrm{n}}=0$ for $\mathrm{n}=$ odd or 4 k

Fourier Series for functions with other symmetries

- Find the Fourier Sine Series for $f(x)$:
- Because we want the sine series, we use the odd extension.
- The Fourier Series for the odd extension has $a_{n}=0$ because of the symmetry about $x=0$.
- What other symmetries does f have?

$$
\begin{array}{ll}
f(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} & b_{1}=0 \\
b_{2} \neq 0 \\
b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x & b_{3}=0 \\
b_{4}=0
\end{array}
$$

- $b_{n}=0$ for $n=$ odd or $4 k$
- Calculate b_{n}

Using Fourier Series to solve the Diffusion Equation

$$
\begin{aligned}
& u_{t}=4 u_{x x} \\
& \left.\frac{d u}{d x}\right|_{x=0,2}=0 \\
& u(x, 0)=\cos \frac{3 \pi x}{2}
\end{aligned}
$$

Using Fourier Series to solve the Diffusion Equation

$$
\begin{aligned}
& u_{t}=4 u_{x x} \\
& \left.\frac{d u}{d x}\right|_{x=0,2}=0 \\
& u(x, 0)=\cos \frac{3 \pi x}{2}
\end{aligned}
$$

The IC is an eigenvector! Note that it satisfies the BCs.

Using Fourier Series to solve the Diffusion Equation

$$
\begin{array}{lr}
u_{t}=4 u_{x x} & \text { The IC is an eigenvector! } \\
\left.\frac{d u}{d x}\right|_{x=0,2}=0 & v_{3}(x)=\cos \frac{3 \pi x}{2} \\
u(x, 0)=\cos \frac{3 \pi x}{2} &
\end{array}
$$

The IC is an eigenvector! Note that it satisfies the BCs.

Using Fourier Series to solve the Diffusion Equation

$$
\begin{array}{lr}
u_{t}=4 u_{x x} & \text { The IC is an eigenvector! } \\
\left.\frac{d u}{d x}\right|_{x=0,2}=0 & v_{3}(x)=\cos \frac{3 \pi x}{2} \\
u(x, 0)=\cos \frac{3 \pi x}{2} & v_{n}(x)=\cos \frac{n \pi x}{2}
\end{array}
$$

The IC is an eigenvector! Note that it satisfies the BCs.

Using Fourier Series to solve the Diffusion Equation

$$
\begin{array}{ll}
u_{t}=4 u_{x x} & \text { The IC is an eigenvector! Note th } \\
\left.\frac{d u}{d x}\right|_{x=0,2}=0 & v_{3}(x)=\cos \frac{3 \pi x}{2} \\
u(x, 0)=\cos \frac{3 \pi x}{2} & v_{n}(x)=\cos \frac{n \pi x}{2} \\
& u_{n}(x, t)=e^{\lambda_{n} t} \cos \frac{n \pi x}{2}
\end{array}
$$

The IC is an eigenvector! Note that it satisfies the BCs.

Using Fourier Series to solve the Diffusion Equation

$$
\begin{aligned}
& u_{t}=4 u_{x x} \\
& \left.\frac{d u}{d x}\right|_{x=0,2}=0 \\
& u(x, 0)=\cos \frac{3 \pi x}{2}
\end{aligned}
$$

The IC is an eigenvector! Note that it satisfies the BCs.

$$
\begin{aligned}
& v_{3}(x)=\cos \frac{3 \pi x}{2} \\
& v_{n}(x)=\cos \frac{n \pi x}{2} \\
& u_{n}(x, t)=e^{\lambda_{n} t} \cos \frac{n \pi x}{2} \\
& \frac{\partial}{\partial t} u_{n}(x, t)=\lambda_{n} e^{\lambda_{n} t} \cos \frac{n \pi x}{2}
\end{aligned}
$$

Using Fourier Series to solve the Diffusion Equation

$$
\begin{aligned}
& u_{t}=4 u_{x x} \\
& \left.\frac{d u}{d x}\right|_{x=0,2}=0 \\
& u(x, 0)=\cos \frac{3 \pi x}{2}
\end{aligned}
$$

The IC is an eigenvector! Note that it satisfies the BCs.

$$
\begin{aligned}
& v_{3}(x)=\cos \frac{3 \pi x}{2} \\
& v_{n}(x)=\cos \frac{n \pi x}{2} \\
& u_{n}(x, t)=e^{\lambda_{n} t} \cos \frac{n \pi x}{2} \\
& \frac{\partial}{\partial t} u_{n}(x, t)=\lambda_{n} e^{\lambda_{n} t} \cos \frac{n \pi x}{2} \\
& \frac{\partial^{2}}{\partial x^{2}} u_{n}(x, t)=-\frac{n^{2} \pi^{2}}{4} e^{\lambda_{n} t} \cos \frac{n \pi x}{2}
\end{aligned}
$$

Using Fourier Series to solve the Diffusion Equation

$$
\begin{aligned}
& u_{t}=4 u_{x x} \\
& \left.\frac{d u}{d x}\right|_{x=0,2}=0 \\
& u(x, 0)=\cos \frac{3 \pi x}{2}
\end{aligned}
$$

The IC is an eigenvector! Note that it satisfies the BCs.

$$
\begin{gathered}
v_{3}(x)=\cos \frac{3 \pi x}{2} \\
v_{n}(x)=\cos \frac{n \pi x}{2} \\
u_{n}(x, t)=e^{\lambda_{n} t} \cos \frac{n \pi x}{2} \\
\frac{\partial}{\partial t} u_{n}(x, t)=\lambda_{n} e^{\lambda_{n} t} \cos \frac{n \pi x}{2} \\
4 \frac{\partial^{2}}{\partial x^{2}} u_{n}(x, t)=-\frac{4 n^{2} \pi^{2}}{4} e^{\lambda_{n} t} \cos \frac{n \pi x}{2}
\end{gathered}
$$

Using Fourier Series to solve the Diffusion Equation

$$
\begin{aligned}
& u_{t}=4 u_{x x} \\
& \left.\frac{d u}{d x}\right|_{x=0,2}=0 \\
& u(x, 0)=\cos \frac{3 \pi x}{2}
\end{aligned}
$$

The IC is an eigenvector! Note that it satisfies the BCs.

$$
\begin{gathered}
v_{3}(x)=\cos \frac{3 \pi x}{2} \\
v_{n}(x)=\cos \frac{n \pi x}{2} \\
u_{n}(x, t)=e^{\lambda_{n} t} \cos \frac{n \pi x}{2} \\
\frac{\partial}{\partial t} u_{n}(x, t)=\lambda_{n} e^{\lambda_{n} t} \cos \frac{n \pi x}{2} \\
4 \frac{\partial^{2}}{\partial x^{2}} u_{n}(x, t)=-\frac{4^{2} n^{2} \pi^{2}}{4} e^{\lambda_{n} t} \cos \frac{n \pi x}{2}
\end{gathered}
$$

Using Fourier Series to solve the Diffusion Equation

$$
\begin{aligned}
& u_{t}=4 u_{x x} \\
& \left.\frac{d u}{d x}\right|_{x=0,2}=0 \\
& u(x, 0)=\cos \frac{3 \pi x}{2}
\end{aligned}
$$

The IC is an eigenvector! Note that it satisfies the BCs.

$$
\begin{gathered}
v_{3}(x)=\cos \frac{3 \pi x}{2} \\
v_{n}(x)=\cos \frac{n \pi x}{2} \\
u_{n}(x, t)=e^{\lambda_{n} t} \cos \frac{n \pi x}{2} \\
\frac{\partial}{\partial t} u_{n}(x, t)=\lambda_{n} e^{\lambda_{n} t} \cos \frac{n \pi x}{2} \\
4 \frac{\partial^{2}}{\partial x^{2}} u_{n}(x, t)=-\frac{4 n^{2} \pi^{2}}{4 \pi} e^{\lambda_{n} t} \cos \frac{n \pi x}{2}
\end{gathered}
$$

Using Fourier Series to solve the Diffusion Equation

$$
\begin{aligned}
& u_{t}=4 u_{x x} \\
& \left.\frac{d u}{d x}\right|_{x=0,2}=0 \\
& u(x, 0)=\cos \frac{3 \pi x}{2}
\end{aligned}
$$

The IC is an eigenvector! Note that it satisfies the BCs.

$$
\begin{aligned}
& v_{3}(x)=\cos \frac{3 \pi x}{2} \\
& v_{n}(x)=\cos \frac{n \pi x}{2} \\
& u_{n}(x, t)=e^{\lambda_{n} t} \cos \frac{n \pi x}{2} \\
& \frac{\partial}{\partial t} u_{n}(x, t)=\lambda_{n} e^{\lambda_{n} t} \cos \frac{n \pi x}{2} \\
& 4 \frac{\partial^{2}}{\partial x^{2}} u_{n}(x, t)=-\frac{4 n^{2} \pi^{2}}{4} e^{\lambda_{n} t} \cos \frac{n \pi x}{2} \\
& \lambda_{n}=-n^{2} \pi^{2}
\end{aligned}
$$

Using Fourier Series to solve the Diffusion Equation

$$
\begin{aligned}
& u_{t}=4 u_{x x} \\
& \left.\frac{d u}{d x}\right|_{x=0,2}=0 \\
& u(x, 0)=\cos \frac{3 \pi x}{2}
\end{aligned}
$$

The IC is an eigenvector! Note that it satisfies the BCs.

$$
\begin{gathered}
v_{3}(x)=\cos \frac{3 \pi x}{2} \\
v_{n}(x)=\cos \frac{n \pi x}{2} \\
u_{n}(x, t)=e^{\lambda_{n} t} \cos \frac{n \pi x}{2} \\
\frac{\partial}{\partial t} u_{n}(x, t)=\lambda_{n} e^{\lambda_{n} t} \cos \frac{n \pi x}{2} \\
4 \frac{\partial^{2}}{\partial x^{2}} u_{n}(x, t)=-\frac{4 n^{2} \pi^{2}}{4} e^{\lambda_{n} t} \cos \frac{n \pi x}{2}
\end{gathered}
$$

So the solution is

$$
u(x, t)=e^{-9 \pi^{2} t} \cos \frac{3 \pi x}{2}
$$

Using Fourier Series to solve the Diffusion Equation

$$
\begin{aligned}
& u_{t}=4 u_{x x} \\
& \left.\frac{d u}{d x}\right|_{x=0,2}=0 \\
& u(x, 0)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}
\end{aligned}
$$

Using Fourier Series to solve the Diffusion Equation

$$
\begin{aligned}
& u_{t}=4 u_{x x} \\
& \left.\frac{d u}{d x}\right|_{x=0,2}=0 \\
& u(x, 0)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}
\end{aligned}
$$

The IC is the sum of eigenvectors!

Using Fourier Series to solve the Diffusion Equation

$$
\begin{aligned}
& u_{t}=4 u_{x x} \\
& \left.\frac{d u}{d x}\right|_{x=0,2}=0 \\
& u(x, 0)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}
\end{aligned}
$$

The IC is the sum of eigenvectors!

$$
u_{n}(x, t)=e^{\lambda_{n} t} \cos \frac{n \pi x}{2}
$$

Using Fourier Series to solve the Diffusion Equation

$$
\begin{aligned}
& u_{t}=4 u_{x x} \\
& \left.\frac{d u}{d x}\right|_{x=0,2}=0 \\
& u(x, 0)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}
\end{aligned}
$$

The IC is the sum of eigenvectors!

$$
\begin{aligned}
& u_{n}(x, t)=e^{\lambda_{n} t} \cos \frac{n \pi x}{2} \\
& \lambda_{n}=-n^{2} \pi^{2}
\end{aligned}
$$

Using Fourier Series to solve the Diffusion Equation

$$
\begin{aligned}
& u_{t}=4 u_{x x} \\
& \left.\frac{d u}{d x}\right|_{x=0,2}=0 \\
& u(x, 0)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L}
\end{aligned}
$$

The IC is the sum of eigenvectors!

$$
\begin{aligned}
& u_{n}(x, t)=e^{\lambda_{n} t} \cos \frac{n \pi x}{2} \\
& \lambda_{n}=-n^{2} \pi^{2} \\
& u(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} e^{-n^{2} \pi^{2} t} \cos \frac{n \pi x}{2}
\end{aligned}
$$

Using Fourier Series to solve the Diffusion Equation

$$
\begin{aligned}
& u_{t}=4 u_{x x} \\
& \left.\frac{d u}{d x}\right|_{x=0,2}=0 \\
& u(x, 0)=x
\end{aligned}
$$

Using Fourier Series to solve the Diffusion Equation

$$
\begin{aligned}
& u_{t}=4 u_{x x} \\
& \left.\frac{d u}{d x}\right|_{x=0,2}=0 \\
& u(x, 0)=x
\end{aligned}
$$

(A) $u(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} e^{-n^{2} \pi^{2} t} \cos \frac{n \pi x}{2} \quad a_{0}=1, a_{n}=-\frac{8}{n^{2} \pi^{2}}$ for n even
$(0$ for n odd $)$
(B) $u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-n^{2} \pi^{2} t} \sin \frac{n \pi x}{2} \quad b_{n}=\frac{(-1)^{n+1} 4}{n \pi}$

Using Fourier Series to solve the Diffusion Equation

$$
\begin{aligned}
& u_{t}=4 u_{x x} \\
& \left.\frac{d u}{d x}\right|_{x=0,2}=0 \\
& u(x, 0)=x
\end{aligned}
$$

$\hat{\sim}(\mathrm{A}) u(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} e^{-n^{2} \pi^{2} t} \cos \frac{n \pi x}{2} \quad a_{0}=1, a_{n}=-\frac{8}{n^{2} \pi^{2}}$ for n even
(B) $u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-n^{2} \pi^{2} t} \sin \frac{n \pi x}{2} \quad b_{n}=\frac{(-1)^{n+1} 4}{n \pi}$

Using Fourier Series to solve the Diffusion Equation

$$
\begin{aligned}
& u_{t}=4 u_{x x} \\
& \left.\frac{d u}{d x}\right|_{x=0,2}=0 \\
& u(x, 0)=x
\end{aligned}
$$

$\hat{\imath}(\mathrm{A}) u(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} e^{-n^{2} \pi^{2} t} \cos \frac{n \pi x}{2} \quad a_{0}=1, a_{n}=-\frac{8}{-\frac{1}{n^{2} \pi^{2}} \text { for } n \text { even }} \begin{array}{r}(0 \text { for } n \text { odd })\end{array}$
(B) $u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-n^{2} \pi^{2} t} \sin \frac{n \pi x}{2} \quad b_{n}=\frac{(-1)^{n+1} 4}{n \pi}$

Using Fourier Series to solve the Diffusion Equation

$$
\begin{aligned}
& u_{t}=4 u_{x x} \\
& \left.\frac{d u}{d x}\right|_{x=0,2}=0 \\
& u(x, 0)=x
\end{aligned}
$$

$\hat{\imath}(\mathrm{A}) u(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} e^{-n^{2} \pi^{2} t} \cos \frac{n \pi x}{2} \quad a_{0}=1, a_{n}=-\frac{8}{-\frac{1}{n^{2} \pi^{2}} \text { for } n \text { even }} \begin{array}{r}(0 \text { for } n \text { odd })\end{array}$
(B) $u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-n^{2} \pi^{2} t} \sin \frac{n \pi x}{2} \quad b_{n}=\frac{(-1)^{n+1} 4}{n \pi}$

Using Fourier Series to solve the Diffusion Equation

$$
\begin{aligned}
& u_{t}=4 u_{x x} \\
& u(0, t)=u(2, t)=0 \\
& u(x, 0)=x
\end{aligned}
$$

Using Fourier Series to solve the Diffusion Equation

$u_{t}=4 u_{x x}$
$u(0, t)=u(2, t)=0$
$u(x, 0)=x$
(A) $u(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} e^{-n^{2} \pi^{2} t} \cos \frac{n \pi x}{2}$
$a_{0}=1, a_{n}=-\frac{8}{n^{2} \pi^{2}}$ for n even
(0 for n odd)
(B) $u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-n^{2} \pi^{2} t} \sin \frac{n \pi x}{2}$
$b_{n}=\frac{(-1)^{n+1} 4}{n \pi}$

Using Fourier Series to solve the Diffusion Equation

$$
u_{t}=4 u_{x x}
$$

$$
u(0, t)=u(2, t)=0
$$

$$
u(x, 0)=x
$$

(A) $u(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} e^{-n^{2} \pi^{2} t} \cos \frac{n \pi x}{2} \quad a_{0}=1, a_{n}=-\frac{8}{n^{2} \pi^{2}}$ for n even
$(0$ for n odd $)$
$\hat{\imath}(\mathrm{B}) u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-n^{2} \pi^{2} t} \sin \frac{n \pi x}{2}$

$$
b_{n}=\frac{(-1)^{n+1} 4}{n \pi}
$$

Using Fourier Series to solve the Diffusion Equation

$$
\begin{aligned}
& u_{t}=4 u_{x x} \\
& u(0, t)=u(2, t)=0 \\
& u(x, 0)=x
\end{aligned}
$$

(A) $u(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} e^{-n^{2} \pi^{2} t} \cos \frac{n \pi x}{2} \quad a_{0}=1, a_{n}=-\frac{8}{n^{2} \pi^{2}}$ for n even
$(0$ for n odd $)$
$\hat{y}(\mathrm{~B}) u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-n^{2} \pi^{2} t} \sin \frac{n \pi x}{2}$

$$
b_{n}=\frac{(-1)^{n+1} 4}{n \pi}
$$

Using Fourier Series to solve the Diffusion Equation

$$
\begin{aligned}
& u_{t}=4 u_{x x} \\
& u(0, t)=u(2, t)=0 \\
& u(x, 0)=x
\end{aligned}
$$

(A) $u(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} e^{-n^{2} \pi^{2} t} \cos \frac{n \pi x}{2} \quad a_{0}=1, a_{n}=-\frac{8}{n^{2} \pi^{2}}$ for n even
$(0$ for n odd $)$
$\hat{\imath}(\mathrm{B}) u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-n^{2} \pi^{2} t} \sin \frac{n \pi x}{2}$ $b_{n}=\frac{(-1)^{n+1} 4}{n \pi}$

Using Fourier Series to solve the Diffusion Equation

$$
\begin{aligned}
& u_{t}=4 u_{x x} \\
& u(0, t)=u(2, t)=0 \\
& u(x, 0)=x
\end{aligned}
$$

(A) $u(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} e^{-n^{2} \pi^{2} t} \cos \frac{n \pi x}{2} \quad a_{0}=1, a_{n}=-\frac{8}{n^{2} \pi^{2}}$ for n even
$(0$ for n odd $)$
$\hat{\sim}(\mathrm{B}) u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-n^{2} \pi^{2} t} \sin \frac{n \pi x}{2}$

$$
b_{n}=\frac{(-1)^{n+1} 4}{n \pi}
$$

- Show Desmos movies.
https://www.desmos.com/calculator/yt7kztckeu

