Today

e Summary of steps for solving the Diffusion Equation with homogeneous
Dirichlet or Neumann BCs using Fourier Series.

e Nonhomogeneous BCs
e Mixed Dirichlet/Neumann BCs
e End-of-term info:
e Don’t forget to complete the online teaching evaluation survey.
e Next Thursday, two-stage review (optionally for 2/50 exam points).

e Office hours during exams TBA but sometime Apr 15/16/27.




Using Fourier Series to solve the

e Steps to solving the PDE:

Diffusion

—quation

e Determine the eigenfunctions for the problem (look at BCs).

e Represent the IC u(x,0)=f(x) by a sum of eigenfunctions (Fourier

series).

e Write down the solution by inserting e into each term of the FS.
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Using Fourier Series to solve the Diffusion Equation

e Steps to solving the PDE:
e Determine the eigenfunctions for the problem (look at BCs).

e Represent the IC u(x,0)=f(x) by a sum of eigenfunctions (Fourier
series).

e Write down the solution by inserting e into each term of the FS.

ur = Dug, —> PDE determines all possible eigenfunctions.

=0 —> BCs select a subset of the eigenfunctions.
x=0,L

u(xz,0) = f(z) —> ICis satisfied by adding up eigenfunctions.
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Using Fourier Series to solve the Diffusion Equation

ur = Du, —> PDE determines all possible eigenfunctions.

Let’s look for all possible eigenfunctions:

Dvg.(x) = Av(x)

— A
Case I: A<0. v)(x) = cos (\/ D:C) and w)(x) = sin (

For each value of A<0, these are both eigenfunctions.
Casell: A=0. v,, =0 = v, =C; = v(x)=Ciox+ Cs
The A=0 eigenfunctions are therefore v(x) = 1 and v(x) = .

These do not decay with time so they form the steady state.

A

Case lll: A>0. vy (z) = eV 57 and wy(x) = e~V

These don’t satisfy any BCs so we’ll drop this case.
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=0 —> BCs select a subset of the eigenfunctions.

—X

D
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ur = Du, —> PDE determines all possible eigenfunctions.
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Case |I: A<0. vy (x) =

works for certain A, in particula

Case II: A=0. @: nd uler==x

Represent IC u(x,0) = f(x) by u(x,0) = a

2

—’)’2,27T2Dt/L2 nirxr
COS "], < Steady state is constant term,

that is the average value of f(x)!
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Using Fourier Series to solve the Diffusion Equation
U = 4tgy

Write down the solution to this IVP.

«<—— doesn’t satisfy IC.

«<—— don’t satisfy BCs.

7

nmx 2 3mxx . nmx
b, = sin —— sin dx
2 0 2 2

2 3mr NI
Qp = sin — cos — dx
0 2 2
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...with nonhomogeneous boundary conditions

e Solve the Diffusion Equation with nonhomogeneous BCs:

u(0,t) = a  Recall - rate of change is

proportional to curvature so B

u(L,t) =b bumps get ironed out.

u(x,()):f( )
b—a
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...with nonhomogeneous boundary conditions

e Solve the Diffusion Equation with nonhomogeneous BCs:

/\\A (K‘{:)

u(0,t) = a e Recall - rate of change is !

proportional to curvature so B 4
U(L7 t) =5 bumps get ironed out. /
o

u(x,()) :f( )

vz, t) = u(z,t) — (a |

} = vy = Dv,,

* v(x,1) satisfies the Diffusion Eg
with homogeneous Dirichlet
BCs and a new IC.

e General trick: define v=u-SS
and find v as before.




