Today

- Solving ODEs using Laplace transforms
- The Heaviside and associated step and ramp functions
- ODE with a ramped forcing function

Solving IVPs using Laplace transforms (6.2)

- Solve the equation $y^{\prime \prime}+6 y^{\prime}+13 y=0$ with initial conditions $\mathrm{y}(0)=1$, $y^{\prime}(0)=0$ using Laplace transforms.

$$
\begin{array}{r}
Y(s)=\frac{s+6}{s^{2}+6 s+13}=\frac{s+6}{s^{2}+6 s+9+4}=\frac{s+6}{(s+3)^{2}+4}=\frac{s+3+3}{(s+3)^{2}+4} \\
=\frac{s+3}{(s+3)^{2}+4}+\frac{3}{(s+3)^{2}+4}=\frac{s+3}{(s+3)^{2}+2^{2}}+\frac{3}{2} \frac{2}{(s+3)^{2}+2^{2}} \\
y(t)=e^{-3 t} \cos (2 t)+\frac{3}{2} e^{-3 t} \sin (2 t)
\end{array}
$$

1. Does the denominator have real or complex roots? Complex.
2. Complete the square.
3. Put numerator in form $(s+\alpha)+\beta$ where $(s+\alpha)$ is the completed square.
4. Fix up coefficient of the term with no s in the numerator.
5. Invert.

Solving IVPs using Laplace transforms (6.2)

- What is the transformed equation for the IVP

$$
\begin{aligned}
& y^{\prime}+6 y=e^{2 t} \\
& y(0)=2
\end{aligned}
$$

(A) $Y^{\prime}(s)+6 Y(s)=\frac{1}{s+2}$
(E) Explain, please.
(B) $Y^{\prime}(s)+6 Y(s)=\frac{1}{s-2}$
(C) $s Y(s)+2+6 Y(s)=\frac{1}{s+2}$
$\omega(\mathrm{D}) s Y(s)-2+6 Y(s)=\frac{1}{s-2}$

$$
\begin{aligned}
& \mathcal{L}\left\{y^{\prime}(t)\right\}=s Y(s)-2 \\
& \mathcal{L}\{6 y(t)\}=6 Y(s) \\
& \mathcal{L}\left\{e^{2 t}\right\}=\frac{1}{s-2}
\end{aligned}
$$

$$
\mathcal{L}\left\{e^{2 t}\right\}=\int_{0}^{\infty} e^{(2-s) t} d t
$$

$$
\mathcal{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)
$$

Solving IVPs using Laplace transforms (6.2)

- Find the solution to $y^{\prime}+6 y=e^{2 t}$, subject to IC $y(0)=2$.

$$
\begin{aligned}
& s Y(s)-2+6 Y(s)=\frac{1}{s-2} \\
& Y(s)=\left(2+\frac{1}{s-2}\right) /(s+6) \\
& =\frac{2}{s+6}+\frac{1}{(s-2)(s+6)} \\
& \text {) } \frac{1}{(s-2)(s+6)}=\frac{A}{s-2}+\frac{B}{s+6} \\
& 1=A(s+6)+B(s-2) \\
& (s=2) \quad 1=8 A \\
& y(t)=2 e^{-6 t} \mathcal{L}^{-1}\left(\frac{1}{(s-2)(s+6)}\right. \\
& (s=-6) \quad 1=-8 B \\
& y(t)=2 e^{-6 t}+\frac{1}{8} \mathcal{L}^{-1}\left(\frac{1}{s-2}-\frac{1}{s+6}\right) \\
& y(t)=\frac{15}{8} e^{-6 t}+\frac{1}{8} e^{2 t} \\
& y(t)=2 e^{-6 t}+\frac{1}{8} e^{2 t}-\frac{1}{8} e^{-6 t} \\
& y_{h}(t)=C e^{-6 t} \\
& C=\frac{15}{8} \quad y_{p}(t)=\frac{1}{8} e^{2 t}
\end{aligned}
$$

Solving IVPs using Laplace transforms (6.2)

- With a forcing term, the transformed equation is

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=g(t) \\
a\left(s^{2} Y(s)-s y(0)-y^{\prime}(0)\right)+b(s Y(s)-y(0))+c Y(s)=G(s) \\
Y(s)=\frac{(a s+b) y(0)+a y^{\prime}(0)}{a s^{2}+b s+c}+\frac{G(s)}{a s^{2}+b s+c} \\
\begin{array}{c}
\text { transform of homogeneous } \\
\text { solution with two degrees } \\
\text { of freedom }
\end{array}
\end{gathered}
$$

Solving IVPs using Laplace transforms (6.2)

- With a forcing term, the transformed equation is

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=g(t) \\
a\left(s^{2} Y(s)-s y(0)-y^{\prime}(0)\right)+b(s Y(s)-y(0))+c Y(s)=G(s) \\
Y(s)=\frac{(a s+b) y(0)+a y^{\prime}(0)}{a s^{2}+b s+c}+\frac{G(s)}{a s^{2}+b s+c}
\end{gathered}
$$

- If denominator has unique real factors, use PFD and get

$$
Y_{h}(s)=\frac{A}{s-r_{1}}+\frac{B}{s-r_{2}} \quad \rightarrow \quad y_{h}(t)=A e^{r_{1} t}+B e^{r_{2} t}
$$

- If denominator has repeated real factors, use PFD and get

$$
Y_{h}(s)=\frac{A}{s-r}+\frac{B}{(s-r)^{2}} \quad \rightarrow \quad y_{h}(t)=A e^{r t}+B t e^{r t}
$$

Solving IVPs using Laplace transforms (6.2)

- Unique real factors, $Y_{h}(g)=\frac{A}{s-y_{1}}+\frac{B}{s-r_{2}} \rightarrow y_{h}(t)=A e^{r_{1} t}+B e^{r_{2} t}$
- Repeated factor, $Y_{h}(s)=\frac{A}{s-r_{1}}+\frac{B}{\left(s-r_{2}\right)^{2}} \rightarrow \quad y_{h}(t)=A e^{r_{1} t}+B t e^{r_{1} t}$
- No real factors, eomplete square, simplify and get

$$
\begin{gathered}
Y_{h}(s)=\frac{A s}{(s-\alpha)^{2}+\beta^{2}}+\frac{B}{(s-\alpha)^{2}+\beta^{2}} \quad\left(A=a y(0), B=a y^{\prime}(0)+b y(0)\right) \\
Y_{h}(s)=\frac{A(s-\alpha)+A \alpha}{(s-\alpha)^{2}+\beta^{2}}+\frac{B}{(-\alpha)^{2}+\beta^{2}} \\
Y_{h}(s)=\frac{A(s-\alpha)}{(s-\alpha)^{2}+\beta^{2}}+\frac{B+A \alpha}{(s-\alpha)^{2}-\beta^{2}} \\
Y_{h}(s)=\frac{A(s-\alpha)}{(s-\alpha)^{2}+\beta^{2}}+\frac{B+A \alpha}{\beta} \frac{\beta}{(s-\alpha)^{2}+\beta^{2}} \quad \rightarrow y(t)=e^{-\alpha t}\left(A \cos (\beta t)+\frac{B+A \alpha}{\beta} \sin (\beta t)\right)
\end{gathered}
$$

Solving IVPs using Laplace transforms (6.2)

- Inverting the forcing/particular part $Y_{p}(s)=\frac{G(s)}{a s^{2}+b s+c}$.
- Usually a combination of similar techniques (PFD, manipulating constants) works.
- Which is the correct PFD form for $Y(s)=\frac{s^{2}+2 s-3}{(s-1)^{2}\left(s^{2}+4\right)}$?

$$
\begin{aligned}
\text { (A) } Y(s) & =\frac{A}{(s-1)^{2}}+\frac{B}{\left(s^{2}+4\right)} \\
\text { (B) } Y(s) & =\frac{A s+B}{(s-1)^{2}}+\frac{C s+D}{\left(s^{2}+4\right)} \\
\text { (C) } Y(s) & =\frac{A}{s-1}+\frac{B}{(s-1)^{2}}+\frac{C}{\left(s^{2}+4\right)} \\
\hat{W}(\mathrm{D}) ~ Y(s) & =\frac{A}{s-1}+\frac{B}{(s-1)^{2}}+\frac{C s+D}{\left(s^{2}+4\right)}
\end{aligned}
$$

(E) MATH 101 was a long time ago.

Laplace transforms (so far)

$f(t)$	$\frac{F(s)}{s}$
1	$\frac{1}{s-a}$
$e^{a t}$	$\frac{n!}{s^{n+1}}$
t^{n}	$\frac{a}{s^{2}+a^{2}}$
$\sin (a t)$	$\frac{s}{s^{2}+a^{2}}$
$\cos (a t)$	$F(s-a)$
$e^{a t} f(t)$	$\frac{1}{c} F\left(\frac{s}{c}\right)$

Step function forcing (6.3, 6.4)

- We define the Heaviside function $u_{c}(t)= \begin{cases}0 & t<c, \\ 1 & t \geq c .\end{cases}$
- We use it to model on/off behaviour in ODEs.

- For example, in LRC circuits, Kirchoff's second law tells us that:

$$
\begin{aligned}
& V_{1}+V_{2}+V_{3}=E(t) \\
& L I^{\prime}+I R+\frac{1}{C} Q=E(t) \\
& I=Q^{\prime} \\
& L Q^{\prime \prime}+R Q^{\prime}+\frac{1}{C} Q=E(t)
\end{aligned}
$$

- If $E(t)$ is a voltage source that can be turned on/off, then $E(t)$ is step-like.
- For example, turn E on at $\mathrm{t}=2$ and off again at $t=5$:

- $\ln \mathrm{WW}, \mathrm{u}_{\mathrm{c}}(\mathrm{t})=\mathrm{u}(\mathrm{t}-\mathrm{c})=\mathrm{h}(\mathrm{t}-\mathrm{a})$

Step function forcing (6.3, 6.4)

- Use the Heaviside function to rewrite $g(t)= \begin{cases}0 & \text { for } t<2 \text { and } t \geq 5, \\ 1 & \text { for } 2 \leq t<5 .\end{cases}$
(A) $g(t)=u_{2}(t)+u_{5}(t)$
$\omega(\mathrm{B}) g(t)=u_{2}(t)-u_{5}(t)$

$\downarrow \begin{gathered}\text { messier with } \\ \text { transforms }\end{gathered}$

(D) $g(t)=u_{5}(t)-u_{2}(t)$
(E) Explain, please.

Step function forcing (6.3, 6.4)

- What is the Laplace transform of

$$
\begin{gathered}
g(t)=\left\{\begin{aligned}
0 & \text { for } t<2 \text { and } t \geq 5, \\
1 & \text { for } 2 \leq t<5 .
\end{aligned}\right. \\
=u_{2}(t)-u_{5}(t) ? \\
\mathcal{L}\left\{u_{c}(t)\right\}=\int_{0}^{\infty} e^{-s t} u_{c}(t) d t \\
=\int_{c}^{\infty} e^{-s t} d t=-\left.\frac{1}{s} e^{-s t}\right|_{c} ^{\infty}=\frac{e^{-s c}}{s} \quad(s>0) \\
\mathcal{L}\left\{u_{2}(t)-u_{5}(t)\right\}=\frac{e^{-2 s}}{s}-\frac{e^{-5 s}}{s} \quad(s>0) \\
\text { Recall: } \begin{aligned}
\mathcal{L}\{f(t)+g(t)\} & =\int_{0}^{\infty} e^{-s t}(f(t)+g(t)) d t \\
& =\int_{0}^{\infty} e^{-s t} f(t) d t+\int_{0}^{\infty} e^{-s t} g(t) d t \\
& ={ }^{\mathcal{L}\{f(t)\}}+\mathcal{L}\{g(t)\}
\end{aligned}
\end{gathered}
$$

Step function forcing (6.3, 6.4)

- Suppose we know the transform of $f(t)$ is $F(s)$.
- It will be useful to know the transform of

$$
\begin{aligned}
k(t) & =\left\{\begin{array}{cl}
0 & \text { for } t<c, \\
f(t-c) & \text { for } t \geq c .
\end{array}\right. \\
& =u_{c}(t) f(t-c) \\
\mathcal{L}\{k(t)\} & =\int_{0}^{\infty} e^{-s t} u_{c}(t) f(t-c) d t \\
& =\int_{c}^{\infty} e^{-s t} f(t-c) d t \quad u=t-c, d u=d t \\
& =\int_{0}^{\infty} e^{-s(u+c)} f(u) d u \\
& =e^{-s c} \int_{0}^{\infty} e^{-s u} f(u) d u \quad=e^{-s c} F(s)
\end{aligned}
$$

Step function forcing (6.3, 6.4)

- Solve using Laplace transforms:

$$
\begin{aligned}
& y^{\prime \prime}+2 y^{\prime}+10 y=g(t)= \begin{cases}0 & \text { for } t<2 \text { and } t \geq 5, \\
1 & \text { for } 2 \leq t<5\end{cases} \\
& y(0)=0, y^{\prime}(0)=0
\end{aligned}
$$

- The transformed equation is

$$
\begin{aligned}
& s^{2} Y(s)+2 s Y(s)+10 Y(s)=\frac{e^{-2 s}}{s}-\frac{e^{-5 s}}{s} \\
& Y(s)=\frac{e^{-2 s}-e^{-5 s}}{s\left(s^{2}+2 s+10\right)}=\left(e^{-2 s}-e^{-5 s}\right) H(s)
\end{aligned}
$$

- Recall that $\mathcal{L}\left\{u_{c}(t) f(t-c)\right\}=e^{-s c} F(s)$

$$
H(s)=\frac{1}{s\left(s^{2}+2 s+10\right)}
$$

$$
y(t)=u_{2}(t) h(t-2)-u_{5}(t) h(t-5)
$$

- So we just need $\mathrm{h}(\mathrm{t})$ and we're done.

Step function forcing (6.3, 6.4)

- Inverting $\mathrm{H}(\mathrm{s})$ to get $\mathrm{h}(\mathrm{t}): H(\mathrm{~s})=\frac{1}{s\left(s^{2}+2 s+10\right)}$ Partial fraction
decomposition!
-Does $s^{2}+2 s+10$ factor? No real factors.

$$
H(s)=\frac{1}{s\left(s^{2}+2 s+10\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+2 s+10}
$$

$$
A=\frac{1}{10}, B=-\frac{1}{10}, C=-\frac{1}{5}
$$

$$
y(t)=u_{2}(t) h(t-2)-u_{5}(t) h(t-5)
$$

$$
H(s)=\frac{1}{10} \frac{1}{s}-\frac{1}{10} \frac{s}{s^{2}+2 s+10}-\frac{1}{5} \frac{1}{s^{2}+2 s+10}
$$

$$
H(s)=\frac{1}{10} \frac{1}{s}-\frac{1}{10} \frac{s}{s^{2}+2 s+1+9}-\frac{1}{5} \frac{1}{s^{2}+2 s+1+}
$$

$$
H(s)=\frac{1}{10} \frac{1}{s}-\frac{1}{10} \frac{s}{(s+1)^{2}+9}-\frac{1}{5} \frac{1}{(s+1)^{2}+9}
$$

- See Supplemental notes for the rest of the calculation: https://wiki.math.ubc.ca/mathbook/M256/Resources

Step function forcing (6.3, 6.4)

- An example with a ramped forcing function:

Two methods:

1. Build from left to right, adding/subtracting what you need to make the next section:

- 4

$$
g(t)=u_{5}(t) \frac{1}{5}(t-5)-u_{10}(t) \frac{1}{5}(t-10)
$$

2. Build each section independently:

$$
g(t)=\left(u_{5}(t)-u_{10}(t)\right) \frac{1}{5}(t-5)+u_{10}(t) \cdot 1
$$

w (v) $y(\square)$

$$
\text { - } \omega_{5}
$$

$$
\text { (D) } g(t)=\left(u_{5}(t)(t-5)-u_{10}(t)(t-10)\right) / 10
$$

Step function forcing (6.3, 6.4)

- An example with a ramped forcing function:

$$
\begin{aligned}
& y^{\prime \prime}+4 y=u_{5}(t) \frac{1}{5}(t-5)-u_{10}(t) \frac{1}{5}(t-10) \\
& y(0)=0, y^{\prime}(0)=0 \\
& s^{2} Y+4 Y=\frac{1}{5} \frac{e^{-5 s}-e^{-10 s}}{s^{2}} \\
& Y(s)=\frac{1}{5} \frac{e^{-5 s}-e^{-10 s}}{s^{2}\left(s^{2}+4\right)}=\frac{1}{5}\left(e^{-5 s}-e^{-10 s}\right) H(s) \\
& y(t)=\frac{1}{5}\left[u_{5}(t) h(t-5)-u_{10}(t) h(t-10)\right]
\end{aligned}
$$

- Find $\mathrm{h}(\mathrm{t})$ given that $H(s)=\frac{1}{s^{2}\left(s^{2}+4\right)}$.

$$
h(t)=\frac{1}{4} t-\frac{1}{8} \sin (2 t)
$$

