Today

- Fourier series for Method of Undetermined Coefficients
- Fourier series for Heat / Diffusion equation

Fourier series (Method Undetermined Coefficients)

- Replace $f(t)$ by a sum of trig functions, if possible:

$$
a y^{\prime \prime}+b y^{\prime}+c y=f(t) \stackrel{?}{=} A_{0}+\sum_{n=1}^{N} a_{n} \cos \left(\omega_{n} t\right)+\sum_{n=1}^{N} b_{n} \sin \left(\omega_{n} t\right)
$$

- For any $f(t)$, how do we find the best choice of A_{0}, a_{n}, b_{n} ?
- This problem is closely related to an analogous vector problem: how do you choose $\mathrm{c}_{1}, \mathrm{c}_{2}$ so that $\mathrm{w}=\mathrm{c}_{1} \mathrm{v}_{1}+\mathrm{c}_{2} \mathrm{v}_{2}$?
- If v_{1} and v_{2} are perpendicular $\left(\mathrm{v}_{1} \circ \mathrm{v}_{2}=0\right)$, then

$$
\begin{aligned}
& \mathbf{w} \circ \mathbf{v}_{\mathbf{1}}=c_{1} \mathbf{v}_{\mathbf{1}} \circ \mathbf{v}_{\mathbf{1}}+c_{\mathbf{2}} \mathbf{v}_{\mathbf{2}} \circ \mathbf{v}_{\mathbf{1}} \\
& c_{1}=\frac{\mathbf{w} \circ \mathbf{v}_{\mathbf{1}}}{\mathbf{v}_{\mathbf{1}} \circ \mathbf{v}_{\mathbf{1}}} \\
& \mathbf{v}_{\mathbf{1}} \circ \mathbf{v}_{\mathbf{1}}=\left\|\mathbf{v}_{\mathbf{1}}\right\|^{2} \quad c_{2}=\frac{\mathbf{w} \circ \mathbf{v}_{\mathbf{2}}}{\mathbf{v}_{\mathbf{2}} \circ \mathbf{v}_{\mathbf{2}}}
\end{aligned}
$$

Fourier series (Method Undetermined Coefficients)

- For functions, define dot product as

$$
g(t) \circ h(t)=\int_{\text {one period }} g(t) h(t) d t
$$

- just like for vectors but indexed over all tinstead of 1, 2, 3:

$$
\mathbf{v} \circ \mathbf{w}=v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}
$$

Fourier series (Method Undetermined Coefficients)

- Back to our ODE, what do we choose for the w_{n} if $f(t)$ has period T? Keep in mind that we want all the functions involved to have period T .

$$
\begin{aligned}
& a y^{\prime \prime}+b y^{\prime}+c y=f(t) \stackrel{?}{=} A_{0}+\sum_{n=1}^{N} a_{n} \cos \left(\omega_{n} t\right)+\sum_{n=1}^{N} b_{n} \sin \left(\omega_{n} t\right) \\
& \text { (A) } \mathrm{w}_{\mathrm{n}}=\pi / \mathrm{T}
\end{aligned}
$$

Once we find the coefficients, this will be

$$
\text { (B) } w_{n}=2 \pi / T
$$ the Fourier series representation of $f(t)$.

(C) $\mathrm{w}_{\mathrm{n}}=\mathrm{n} \pi / \mathrm{T}$
(D) $w_{n}=2 \pi n / T$
(E) Don't know. Explain please.

Fourier series (Heat/Diffusion equation)

- When we talk about the Heat/Diffusion equation, we'll need to satisfy conditions at $x=0$ and $x=L$ (ends of a heated rod or a pipe filled with solution):

$$
u(0)=0, u(L)=0
$$

- How should we choose w_{n} in this case?

$$
u(x)=A_{0}+\sum_{n=1}^{N} a_{n} \cos \left(\omega_{n} x\right)+\sum_{n=1}^{N} b_{n} \sin \left(\omega_{n} x\right)
$$

(A) $w_{n}=\pi / L$
(B) $w_{n}=2 \pi / L$

- Here, the function is not periodic on [$0, \mathrm{~L}$] but rather [-L,L]!!
n (C) $w_{n}=n \pi / L$
(D) $w_{n}=2 \pi n / L$
(E) Don't know. Explain please.

Fourier series (Heat/Diffusion equation)

- Want to find Fourier series coefficients A_{0}, a_{n}, b_{n}, that make

$$
u(x) \approx A_{0}+\sum_{n=1}^{N} a_{n} \cos \left(\omega_{n} x\right)+\sum_{n=1}^{N} b_{n} \sin \left(\omega_{n} x\right)
$$

- This will require taking integrals (dot products) like

$$
g(x) \circ h(x)=\int_{-L}^{L} g(x) h(x) d x
$$

- This integral is zero when
$\hat{\forall}(A) g$ is even, h is odd. $\quad<--g(x) h(x)$ is odd.
$(B) g$ is even, h is even. $<--g(x) h(x)$ is even.
(C) g is odd, h is odd. $<-\mathrm{g}(\mathrm{x}) \mathrm{h}(\mathrm{x})$ is even.

Fourier series (Heat/Diffusion equation)

- Define $v_{0}(x) \frac{1}{=1 \quad v_{n}(x)=\cos \left(\frac{n \pi x}{n}\right)} \quad n=(0) 1,2,3,, \ldots$

Fourier series (Heat/Diffusion equation)

- Defining Fourier series:
- Define a function $\mathrm{f}_{\mathrm{Fs}}(\mathrm{x})$ on the interval $[-\mathrm{L}, \mathrm{L}]$ by choosing coefficients A_{0}, a_{n} and b_{n} and setting

$$
\begin{aligned}
f_{F S}(x)=A_{0}+ & a_{1} \cos \left(\frac{\pi x}{L}\right)+a_{2} \cos \left(\frac{2 \pi x}{L}\right)+\cdots \\
& +b_{1} \sin \left(\frac{\pi x}{L}\right)+b_{2} \sin \left(\frac{2 \pi x}{L}\right)+\cdots
\end{aligned}
$$

- This is called a Fourier series. It may or may not converge for different values of x, depending on the choice of coefficients.
- Given any function $f(x)$ on [-L,L], can it be represented by some $f_{F S}(x)$?
- Let's check for $f(x)=2 u_{0}(x)-1$ on the interval $[-1,1] \ldots$

Fourier series (Heat/Diffusion equation)

- Find the Fourier series for $\mathrm{f}(\mathrm{x})=2 \mathrm{u}_{0}(\mathrm{x})-1$ on the interval $[-1,1]$.

$$
\begin{aligned}
f_{F S}(x)= & a_{0} \\
2_{0} & +a_{1} \cos \left(\frac{\pi x}{L}\right)+a_{2} \cos \left(\frac{2 \pi x}{L}\right)+\cdots \\
& +b_{1} \sin \left(\frac{\pi x}{L}\right)+b_{2} \sin \left(\frac{2 \pi x}{L}\right)+\cdots
\end{aligned}
$$

- Our hope is that $f(x)=f_{F s}(x)$ so we calculate coefficients as if they were equal:

$$
\begin{array}{rlrl}
A_{0} & =\frac{1}{2 L} \int_{-L}^{L} f(x) d x \quad \begin{array}{l}
\mathrm{A}_{0} \text { is the average } \\
\text { value of } \mathrm{f}(\mathrm{x})!
\end{array} & & \\
a_{n} & =\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x & & \text { To simplify formulas, usually } \\
b_{n} & =\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x & & a_{0}=2 A_{0}=\frac{1}{L} \int_{-L}^{L} f(x) d x \\
& &
\end{array}
$$

