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* |[ntroduction to systems of equations

e Direction fields

e Figenvalues and eigenvectors

e Finding the general solution (distinct e-value case)

e Return midterm 1



Introduction to systems of equations



Introduction to systems of equations

e So far, we’ve only dealt with equations with one unknown function.
Sometimes, we’ll be interested in more than one unknown function.



Introduction to systems of equations

e So far, we’ve only dealt with equations with one unknown function.
Sometimes, we’ll be interested in more than one unknown function.

e Examples:



Introduction to systems of equations

e So far, we’ve only dealt with equations with one unknown function.
Sometimes, we’ll be interested in more than one unknown function.

e Examples:

¢ position of object in one dimensional space in terms of X, v:



Introduction to systems of equations

e So far, we’ve only dealt with equations with one unknown function.
Sometimes, we’ll be interested in more than one unknown function.

e Examples:

¢ position of object in one dimensional space in terms of X, v:

mz” 4+ vz’ + kx =0



Introduction to systems of equations

e So far, we’ve only dealt with equations with one unknown function.
Sometimes, we’ll be interested in more than one unknown function.

e Examples:

¢ position of object in one dimensional space in terms of X, v:

mz” 4+ vz’ + kx =0

/
L ==



Introduction to systems of equations

e So far, we’ve only dealt with equations with one unknown function.
Sometimes, we’ll be interested in more than one unknown function.

e Examples:

¢ position of object in one dimensional space in terms of X, v:

mz” 4+ vz’ + kx =0

/
L ==

/! /
L — U



Introduction to systems of equations

e So far, we’ve only dealt with equations with one unknown function.
Sometimes, we’ll be interested in more than one unknown function.

e Examples:

¢ position of object in one dimensional space in terms of X, v:

mz" +vr' +kr =0 — mv' +yv+kz =0

/
L ==

/! /
L — U



Introduction to systems of equations

e So far, we’ve only dealt with equations with one unknown function.
Sometimes, we’ll be interested in more than one unknown function.

e Examples:

¢ position of object in one dimensional space in terms of X, v:

mz" +vr' +kr =0 — mv' +yv+kz =0

/ Y k
r = V= ——"L0v— —x

/! / T T
xr =77



Introduction to systems of equations

e So far, we’ve only dealt with equations with one unknown function.
Sometimes, we’ll be interested in more than one unknown function.

e Examples:

¢ position of object in one dimensional space in terms of X, v:

mz" +vr' +kr =0 — mv' +yv+kz =0

/ / Y k
L == U VvV = ———V — —XT

/! / TN TN
gj p—

/
€T = (9



Introduction to systems of equations

e So far, we’ve only dealt with equations with one unknown function.
Sometimes, we’ll be interested in more than one unknown function.

e Examples:

¢ position of object in one dimensional space in terms of X, v:

mz" +vr' +kr =0 — mv' +yv+kz =0

/ / Y k
L == U VvV = ———V — —XT

/! / TN TN
gj p—

/
€T = (9



Introduction to systems of equations

e So far, we’ve only dealt with equations with one unknown function.
Sometimes, we’ll be interested in more than one unknown function.

e Examples:

¢ position of object in one dimensional space in terms of X, v.



Introduction to systems of equations

e So far, we’ve only dealt with equations with one unknown function.
Sometimes, we’ll be interested in more than one unknown function.

e Examples:
¢ position of object in one dimensional space in terms of X, v.

e position of an object in a plane (x, y coordinates) or three
dimensional space (X, y, z coordinates).



Introduction to systems of equations

e So far, we’ve only dealt with equations with one unknown function.
Sometimes, we’ll be interested in more than one unknown function.

e Examples:
¢ position of object in one dimensional space in terms of X, v.

e position of an object in a plane (x, y coordinates) or three
dimensional space (X, y, z coordinates).

¢ positions of multiple objects (two or more masses linked by
springs ).



Introduction to systems of equations

e So far, we’ve only dealt with equations with one unknown function.
Sometimes, we’ll be interested in more than one unknown function.

e Examples:
¢ position of object in one dimensional space in terms of X, v.

e position of an object in a plane (x, y coordinates) or three
dimensional space (X, y, z coordinates).

¢ positions of multiple objects (two or more masses linked by
springs ).

e concentration in connected chambers (saltwater in multiple tanks,
intracellular and extracellular, blood stream and organs).



Introduction to systems of equations

e So far, we’ve only dealt with equations with one unknown function.
Sometimes, we’ll be interested in more than one unknown function.

e Examples:
¢ position of object in one dimensional space in terms of X, v.

e position of an object in a plane (x, y coordinates) or three
dimensional space (X, y, z coordinates).

¢ positions of multiple objects (two or more masses linked by
springs ).

e concentration in connected chambers (saltwater in multiple tanks,
intracellular and extracellular, blood stream and organs).
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e As with single equations, we have linear and nonlinear systems:

e \

pr t“x — y + cos(2t) T r—y
dy _ . 3 dy .

e And we also have nonhomogeneous and homogeneous systems.

/ \

dr dx

azta:—y cos(2t) E:#x—y
d d
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Introduction to systems of equations

e Any linear system can be written in matrix form:

d
d—f =tz — y + cos(2t)
d
d—i = x + 4sin(t)y + ¢°

L0 1ita) (-

e \We’ll focus on the case in which the matrix has constant entries. And
homogeneous, to start. For example,

i) =) (0)
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e Geometric interpretation - direction fields.
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Introduction to systems of equations

e \Which of the following equations matches the given direction field?
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L . 1 1
e Find eigenvalues and eigenvectors of A = :
e Looking for values A and vectors v for which Av = \v.

e \What are the eigenvalues of A?

(A) 1 and -3
(B) -1 and 3
(C) 1and 3
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Solving a system of ODEs

® You can use the second order trick for 2x2 but in general,
¢ Find eigenvalues and eigenvectors of A,
e Assemble general solution by summing up terms of the form

C’neA”tVn

e This works when eigenvalues are distinct or, if there are repeated
eigenvalues, when there are N independent eigenvectors.

e Other cases (not enough e-vectors or complex e-values) Thursday.



