Today

- Method of Undetermined Coefficients for any periodic function.
- Fourier Series and method of undetermined coefficients
- Fourier series calculations

Fourier series

- Recall Method of Undetermined Coefficients for equations of the form

$$
a y^{\prime \prime}+b y^{\prime}+c y=f(t)
$$

- Applicable for functions $f(t)$ that are polynomials, exponentials, sin, cos and products of those.
- How about functions like this (periodic but not trig)?

Fourier series

- For the equation

$$
y^{\prime \prime}+10 y=\cos (t)+\frac{1}{2} \cos (2 t)+\frac{1}{3} \cos (3 t)+\frac{1}{4} \cos (4 t)+\cdots
$$

- what will be the

(E) Don't know. Explain please.

Fourier series

- Replace $f(t)$ by a sum of trig functions, if possible:

$$
a y^{\prime \prime}+b y^{\prime}+c y=f(t) \stackrel{?}{=} A_{0}+\sum_{n=1}^{N} a_{n} \cos \left(\omega_{n} t\right)+\sum_{n=1}^{N} b_{n} \sin \left(\omega_{n} t\right)
$$

- For any $f(t)$, how do we find the best choice of A_{0}, a_{n}, b_{n} ?
- This problem is closely related to an analogous vector problem: how do you choose $\mathrm{c}_{1}, \mathrm{c}_{2}$ so that $\mathrm{w}=\mathrm{c}_{1} \mathrm{v}_{1}+\mathrm{c}_{2} \mathrm{v}_{2}$?
- If v_{1} and v_{2} are perpendicular $\left(\mathrm{v}_{1} \circ \mathrm{v}_{2}=0\right)$, then

$$
\begin{aligned}
& \mathbf{w} \circ \mathbf{v}_{\mathbf{1}}=c_{1} \mathbf{v}_{\mathbf{1}} \circ \mathbf{v}_{\mathbf{1}}+c_{2} \mathbf{v}_{\mathbf{2}} \circ \mathbf{v}_{\mathbf{1}} \\
& c_{1}=\frac{\mathbf{w} \circ \mathbf{v}_{\mathbf{1}}}{\mathbf{v}_{\mathbf{1}} \circ \mathbf{v}_{\mathbf{1}}} \\
& \mathbf{v}_{\mathbf{1}} \circ \mathbf{v}_{\mathbf{1}}=\left\|\mathbf{v}_{\mathbf{1}}\right\|^{2} \quad c_{2}=\frac{\mathbf{w} \circ \mathbf{v}_{\mathbf{2}}}{\mathbf{v}_{\mathbf{2}} \circ \mathbf{v}_{\mathbf{2}}}
\end{aligned}
$$

Fourier series

- For functions, define dot product as

$$
g(x) \circ h(x)=\int_{\text {one period }} g(x) h(x) d x
$$

- just like for vectors but indexed over all x instead of $1,2,3$:

$$
\mathbf{v} \circ \mathbf{w}=v_{1} w_{1}+v_{2} w_{2}+v_{3} w_{3}
$$

Fourier series

- Back to our ODE, what do we choose for the w_{n} if $f(t)$ has period T? Keep in mind that we want all the functions involved to have period T .

$$
\begin{aligned}
& a y^{\prime \prime}+b y^{\prime}+c y=f(t) \stackrel{?}{=} A_{0}+\sum_{n=1}^{N} a_{n} \cos \left(\omega_{n} t\right)+\sum_{n=1}^{N} b_{n} \sin \left(\omega_{n} t\right) \\
& \text { (A) } \mathrm{w}_{\mathrm{n}}=\pi / \mathrm{T}
\end{aligned}
$$

Once we find the coefficients, this will be
(B) $w_{n}=2 \pi / T$ the Fourier series representation of $f(t)$.

For FS in general, people use $w_{n}=\pi n / T$
(C) $\mathrm{w}_{\mathrm{n}}=\mathrm{n} \pi / \mathrm{T}$ for reasons that will make more sense once we cover PDEs.

i
(D) $W_{n}=2 \pi n / T$
(E) Don't know. Explain please.

Finding the Fourier series coefficients

- Define $v_{0}(x) \frac{1 \quad v_{n}(x)=\cos \left(\frac{n \pi x}{1}\right) \quad n=(0,) 1,2,3, \ldots}{\square 11}$

Fourier series

- Defining Fourier series:
- Define a function $\mathrm{f}_{\mathrm{Fs}}(\mathrm{x})$ on the interval $[-\mathrm{L}, \mathrm{L}]$ by choosing coefficients A_{0}, a_{n} and b_{n} and setting

$$
\begin{aligned}
f_{F S}(x)=A_{0}+ & a_{1} \cos \left(\frac{\pi x}{L}\right)+a_{2} \cos \left(\frac{2 \pi x}{L}\right)+\cdots \\
& +b_{1} \sin \left(\frac{\pi x}{L}\right)+b_{2} \sin \left(\frac{2 \pi x}{L}\right)+\cdots
\end{aligned}
$$

- This is called a Fourier series. It may or may not converge for different values of x, depending on the choice of coefficients.
- Given any function $f(x)$ on [-L,L], can it be represented by some $f_{F S}(x)$?
- Let's check for $f(x)=2 u_{0}(x)-1$ on the interval $[-1,1] \ldots$...

Fourier series

- Find the Fourier series for $\mathrm{f}(\mathrm{x})=2 \mathrm{u}_{0}(\mathrm{x})-1$ on the interval $[-1,1]$.

$$
\begin{aligned}
f_{F S}(x)= & a_{0}+ \\
A_{0} & +a_{1} \cos \left(\frac{\pi x}{L}\right)+a_{2} \cos \left(\frac{2 \pi x}{L}\right)+\cdots \\
& +b_{1} \sin \left(\frac{\pi x}{L}\right)+b_{2} \sin \left(\frac{2 \pi x}{L}\right)+\cdots
\end{aligned}
$$

- Our hope is that $f(x)=f_{F s}(x)$ so we calculate coefficients as if they were equal:

$$
\begin{array}{lll}
A_{0}=\frac{1}{2 L} \int_{-L}^{L} f(x) d x \quad \begin{array}{ll}
\mathrm{A}_{0} \text { is the average } \\
\text { value of } \mathrm{f}(\mathrm{x})!
\end{array} & & \text { • To simplify formulas, usually } \\
a_{n} & =\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x & \\
\text { define }
\end{array}
$$

