Today

- Forced vibrations
 - Newton's 2nd Law with external forcing.
 - Forced mass-spring system without damping away from resonance.
 - Forced mass-spring system without damping at resonance.
 - Forced mass-spring system with damping.
- Midterm (Feb 10, in class) Everything up to and including Monday Feb 3 (systems of equations and review of eigenvectors).

$$ma = -kx - \gamma v + F(t)$$

$$ma = -kx - \gamma v \ + F(t)$$
 spring force

• Newton's 2nd Law:

Forced vibrations - nonhomogeneous linear equation with constant coefficients.

- Forced vibrations nonhomogeneous linear equation with constant coefficients.
- Building during earthquake, tuning fork near instrument, car over washboard road, polar bond under EM stimulus (classical, not quantum).

- Without damping ($\gamma=0$). forcing frequency $mx''+kx=F_0\cos(\omega t)$
- For what value(s) of w does this equation equation have an unbounded solution?

(A)
$$w = sqrt(k/m)$$

(B) $w = m/F_0$

(C) $w = (k/m)^2$

(D)
$$w = 2\pi$$

Without damping ($\gamma=0$). forcing frequency $mx''+kx=F_0\cos(\omega t)$

 \bullet Without damping ($\gamma=0$). forcing frequency

$$mx'' + kx = F_0 \cos(\omega t)$$

mx'' + kx = 0

• Without damping ($\gamma = 0$). forcing frequency $mx'' + kx = F_0 \cos(\omega t)$ mx'' + kx = 0 $x_h(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t)$

• Without damping ($\gamma = 0$). forcing frequency $mx'' + kx = F_0 \cos(\omega t)$ mx'' + kx = 0 $x_h(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t)$ $\omega_0 = ?$

• Without damping ($\gamma = 0$). forcing frequency $mx'' + kx = F_0 \cos(\omega t)$ mx'' + kx = 0 $x_h(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t)$ $\omega_0 = \sqrt{\frac{k}{m}}$

• Without damping ($\gamma = 0$). forcing frequency $mx'' + kx = F_0 \cos(\omega t)$ mx'' + kx = 0 $x_h(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t)$ $\omega_0 = \sqrt{\frac{k}{m}}$ natural frequency

• Without damping ($\gamma = 0$). forcing frequency $mx'' + kx = F_0 \cos(\omega t)$ mx'' + kx = 0 $x_h(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t)$ $\omega_0 = \sqrt{\frac{k}{m}}$ • Case 1: $\omega \neq \omega_0$ natural frequency

• Without damping ($\gamma = 0$). forcing frequency $mx'' + kx = F_0 \cos(\omega t)$ mx'' + kx = 0 $x_h(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t)$ $\omega_0 = \sqrt{\frac{k}{m}}$ • Case 1: $\omega \neq \omega_0$ $x_p(t) = A \cos(\omega t) + B \sin(\omega t)$ natural frequency

 \bullet Without damping ($\gamma=0$). $\hfill \ \hfill \ \hfi$ $mx'' + kx = F_0 \cos(\omega t)$ mx'' + kx = 0 $x_h(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t) \qquad \omega_0 = \sqrt{\frac{k}{m}}$ case 1: $\omega \neq \omega_0$ • Case 1: $\omega \neq \omega_0$ natural frequency $x_p(t) = A\cos(\omega t) + B\sin(\omega t)$ A = ?, B = ?

 \bullet Without damping ($\gamma=0$). $\hfill \ \hfill \ \hfi$ $mx'' + kx = F_0 \cos(\omega t)$ mx'' + kx = 0 $x_h(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t) \qquad \omega_0 = \sqrt{\frac{k}{m}}$ case 1: $\omega \neq \omega_0$ • Case 1: $\omega \neq \omega_0$ natural frequency $x_{p}(t) = A\cos(\omega t) + B\sin(\omega t)$ $x_p''(t) = -\omega^2 A \cos(\omega t) - \omega^2 B \sin(\omega t)$

 \bullet Without damping ($\gamma=0$). $\hfill \ \hfill \ \hfi$ $mx'' + kx = F_0 \cos(\omega t)$ mx'' + kx = 0 $x_h(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t) \qquad \omega_0 = \sqrt{\frac{k}{m}}$ case 1: $\omega \neq \omega_0$ • Case 1: $\omega \neq \omega_0$ natural frequency $x_p(t) = A\cos(\omega t) + B\sin(\omega t)$ $x_n''(t) = -\omega^2 A \cos(\omega t) - \omega^2 B \sin(\omega t)$ $mx_{p}^{\prime\prime} + kx_{p} =$

 \bullet Without damping ($\gamma=0$). $\hfill \ \hfill \ \hfi$ $mx'' + kx = F_0 \cos(\omega t)$ mx'' + kx = 0 $x_h(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t) \qquad \omega_0 = \sqrt{\frac{k}{m}}$ case 1: $\omega \neq \omega_0$ • Case 1: $\omega \neq \omega_0$ natural frequency $x_p(t) = A\cos(\omega t) + B\sin(\omega t)$ $x_n''(t) = -\omega^2 A \cos(\omega t) - \omega^2 B \sin(\omega t)$ $mx_p'' + kx_p = (k - \omega^2 m)A\cos(\omega t) + (k - \omega^2 m)B\sin(\omega t)$

 \bullet Without damping ($\gamma=0$). $\hfill \ \hfill \ \hfi$ $mx'' + kx = F_0 \cos(\omega t)$ mx'' + kx = 0 $x_h(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t) \qquad \omega_0 = \sqrt{\frac{k}{m}}$ case 1: $\omega \neq \omega_0$ • Case 1: $\omega \neq \omega_0$ natural frequency $x_p(t) = A\cos(\omega t) + B\sin(\omega t)$ $x_n''(t) = -\omega^2 A \cos(\omega t) - \omega^2 B \sin(\omega t)$ $mx_p'' + kx_p = (k - \omega^2 m)A\cos(\omega t) + (k - \omega^2 m)B\sin(\omega t)$ $=F_0\cos(\omega t)$

 \bullet Without damping ($\gamma=0$). $\hfill \ \hfill \ \hfi$ $mx'' + kx = F_0 \cos(\omega t)$ mx'' + kx = 0 $x_h(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t) \qquad \omega_0 = \sqrt{\frac{k}{m}}$ case 1: $\omega \neq \omega_0$ • Case 1: $\omega \neq \omega_0$ natural frequency $x_{p}(t) = A\cos(\omega t) + B\sin(\omega t)$ $x_n''(t) = -\omega^2 A \cos(\omega t) - \omega^2 B \sin(\omega t)$ $mx_p'' + kx_p = (k - \omega^2 m)A\cos(\omega t) + (k - \omega^2 m)B\sin(\omega t)$ $= F_0 \cos(\omega t) \implies A = \frac{F_0}{(k - \omega^2 m)}$

 \bullet Without damping ($\gamma=0$). $\hfill \ \hfill \ \hfi$ $mx'' + kx = F_0 \cos(\omega t)$ mx'' + kx = 0 $x_h(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t) \qquad \omega_0 = \sqrt{\frac{k}{m}}$ case 1: $\omega \neq \omega_0$ • Case 1: $\omega \neq \omega_0$ natural frequency $x_{p}(t) = A\cos(\omega t) + B\sin(\omega t)$ $x_n''(t) = -\omega^2 A \cos(\omega t) - \omega^2 B \sin(\omega t)$ $mx_p'' + kx_p = (k - \omega^2 m)A\cos(\omega t) + (k - \omega^2 m)B\sin(\omega t)$ $=F_0\cos(\omega t) \quad \Rightarrow A = \frac{F_0}{m(\omega_0^2 - \omega^2)}$

 \bullet Without damping ($\gamma=0$). $\hfill \ \hfill \ \hfi$ $mx'' + kx = F_0 \cos(\omega t)$ mx'' + kx = 0 $x_h(t) = C_1 \cos(\omega_0 t) + C_2 \sin(\omega_0 t) \qquad \omega_0 = \sqrt{\frac{k}{m}}$ case 1: $\omega \neq \omega_0$ • Case 1: $\omega \neq \omega_0$ natural frequency $x_{p}(t) = A\cos(\omega t) + B\sin(\omega t)$ $x_n''(t) = -\omega^2 A \cos(\omega t) - \omega^2 B \sin(\omega t)$ $mx_p'' + kx_p = (k - \omega^2 m)A\cos(\omega t) + (k - \omega^2 m)B\sin(\omega t)$ $=F_0\cos(\omega t) \quad \Rightarrow A = \frac{F_0}{m(\omega_0^2 - \omega^2)}, B = 0$

- Without damping ($\gamma=0$), $\omega\neq\omega_0$.
 - Beats long term behaviour includes both x_h and x_p
 - On the board.

- Without damping ($\gamma=0$), $\omega\neq\omega_0$.
 - Beats long term behaviour includes both x_h and x_p
 - On the board.

• Case 2: $\omega = \omega_0$

• Case 2: $\omega = \omega_0$

$$mx'' + kx = F_0 \cos(\omega_0 t)$$

• Case 2:
$$\omega = \omega_0$$

 $x'' + \omega_0^2 x = \frac{F_0}{m} \cos(\omega_0 t)$

$$\omega_0 = \sqrt{\frac{k}{m}}$$

• Case 2:
$$\omega = \omega_0$$

 $x'' + \omega_0^2 x = \frac{F_0}{m} \cos(\omega_0 t)$ $\omega_0 = \sqrt{\frac{k}{m}}$
 $x_p(t) = t(A\cos(\omega_0 t) + B\sin(\omega_0 t))$

• Case 2:
$$\omega = \omega_0$$

 $x'' + \omega_0^2 x = \frac{F_0}{m} \cos(\omega_0 t)$ $\omega_0 = \sqrt{\frac{k}{m}}$
 $x_p(t) = t(A\cos(\omega_0 t) + B\sin(\omega_0 t))$
 $x'_p(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$

• Case 2:
$$\omega = \omega_0$$

 $x'' + \omega_0^2 x = \frac{F_0}{m} \cos(\omega_0 t)$ $\omega_0 = \sqrt{\frac{k}{m}}$
 $x_p(t) = t(A\cos(\omega_0 t) + B\sin(\omega_0 t))$
 $x'_p(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$
 $+t(-\omega_0 A\sin(\omega_0 t) + \omega_0 B\cos(\omega_0 t))$

• Case 2:
$$\omega = \omega_0$$

 $x'' + \omega_0^2 x = \frac{F_0}{m} \cos(\omega_0 t)$ $\omega_0 = \sqrt{\frac{k}{m}}$
 $x_p(t) = t(A\cos(\omega_0 t) + B\sin(\omega_0 t))$
 $x'_p(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$
 $+t(-\omega_0 A\sin(\omega_0 t) + \omega_0 B\cos(\omega_0 t))$
 $x''_p(t) = -\omega_0 A\sin(\omega_0 t) + \omega_0 B\cos(\omega_0 t)$

• Case 2:
$$\omega = \omega_0$$
$$x'' + \omega_0^2 x = \frac{F_0}{m} \cos(\omega_0 t) \qquad \omega_0 = \sqrt{\frac{k}{m}}$$
$$x_p(t) = t(A\cos(\omega_0 t) + B\sin(\omega_0 t))$$
$$x'_p(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$$
$$+t(-\omega_0 A\sin(\omega_0 t) + \omega_0 B\cos(\omega_0 t))$$
$$x''_p(t) = -\omega_0 A\sin(\omega_0 t) + \omega_0 B\cos(\omega_0 t)$$
$$+(-\omega_0 A\sin(\omega_0 t) + \omega_0 B\cos(\omega_0 t))$$

• Case 2:
$$\omega = \omega_0$$
$$x'' + \omega_0^2 x = \frac{F_0}{m} \cos(\omega_0 t) \qquad \omega_0 = \sqrt{\frac{k}{m}}$$
$$x_p(t) = t(A\cos(\omega_0 t) + B\sin(\omega_0 t))$$
$$x'_p(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$$
$$+t(-\omega_0 A\sin(\omega_0 t) + \omega_0 B\cos(\omega_0 t)))$$
$$x''_p(t) = -\omega_0 A\sin(\omega_0 t) + \omega_0 B\cos(\omega_0 t)$$
$$+(-\omega_0 A\sin(\omega_0 t) + \omega_0 B\cos(\omega_0 t)))$$
$$+t(-\omega_0^2 A\cos(\omega_0 t) - \omega_0^2 B\sin(\omega_0 t)))$$

• Case 2:
$$\omega = \omega_0$$
$$x'' + \omega_0^2 x = \frac{F_0}{m} \cos(\omega_0 t) \qquad \omega_0 = \sqrt{\frac{k}{m}}$$
$$x_p(t) = t(A\cos(\omega_0 t) + B\sin(\omega_0 t))$$
$$x'_p(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$$
$$+t(-\omega_0 A\sin(\omega_0 t) + \omega_0 B\cos(\omega_0 t))$$
$$x''_p(t) = -\omega_0 A\sin(\omega_0 t) + \omega_0 B\cos(\omega_0 t)$$
$$+(-\omega_0 A\sin(\omega_0 t) + \omega_0 B\cos(\omega_0 t))$$
$$+t(-\omega_0^2 A\cos(\omega_0 t) - \omega_0^2 B\sin(\omega_0 t))$$

• Case 2:
$$\omega = \omega_0$$
$$x'' + \omega_0^2 x = \frac{F_0}{m} \cos(\omega_0 t) \qquad \omega_0 = \sqrt{\frac{k}{m}}$$
$$x_p(t) = t(A\cos(\omega_0 t) + B\sin(\omega_0 t))$$
$$x'_p(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$$
$$+t(-\omega_0 A\sin(\omega_0 t) + \omega_0 B\cos(\omega_0 t))$$
$$x''_p(t) = -\omega_0 A\sin(\omega_0 t) + \omega_0 B\cos(\omega_0 t)$$
$$+(-\omega_0 A\sin(\omega_0 t) + \omega_0 B\cos(\omega_0 t))$$
$$+t(-\omega_0^2 A\cos(\omega_0 t) - \omega_0^2 B\sin(\omega_0 t))$$
$$A = 0$$

• Case 2:
$$\omega = \omega_0$$
$$x'' + \omega_0^2 x = \frac{F_0}{m} \cos(\omega_0 t) \qquad \omega_0 = \sqrt{\frac{k}{m}}$$
$$x_p(t) = t(A\cos(\omega_0 t) + B\sin(\omega_0 t))$$
$$x'_p(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t) + (-\omega_0 A\sin(\omega_0 t) + \omega_0 B\cos(\omega_0 t)))$$
$$x''_p(t) = -\omega_0 A\sin(\omega_0 t) + \omega_0 B\cos(\omega_0 t) + (-\omega_0 A\sin(\omega_0 t) + \omega_0 B\cos(\omega_0 t))) + t(-\omega_0^2 A\cos(\omega_0 t) - \omega_0^2 B\sin(\omega_0 t)))$$
$$A = 0$$
$$B = \frac{F_0}{2\omega_0 m} = \frac{F_0}{2\sqrt{km}}$$

• Case 2:
$$\omega = \omega_0$$
$$x'' + \omega_0^2 x = \frac{F_0}{m} \cos(\omega_0 t) \qquad \omega_0 = \sqrt{\frac{k}{m}}$$
$$x_p(t) = t(A\cos(\omega_0 t) + B\sin(\omega_0 t))$$
$$x'_p(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t) + (-\omega_0 A\sin(\omega_0 t) + \omega_0 B\cos(\omega_0 t)))$$
$$x''_p(t) = -\omega_0 A\sin(\omega_0 t) + \omega_0 B\cos(\omega_0 t) + (-\omega_0 A\sin(\omega_0 t) + \omega_0 B\cos(\omega_0 t)) + (t(-\omega_0^2 A\cos(\omega_0 t) - \omega_0^2 B\sin(\omega_0 t))))$$
$$A = 0$$
$$B = \frac{F_0}{2\omega_0 m} = \frac{F_0}{2\sqrt{km}} \qquad x_p(t) = \frac{F_0}{2\sqrt{km}} t\sin(\omega_0 t)$$

- Without damping ($\gamma=0$), $\omega\neq\omega_0$.
 - Long term behaviour x_p grows unbounded, swamping out x_h.

 \bullet Plot of the amplitude of the particular solution as a function of ω .

• Calculated:

$$A = \frac{F_0}{m(\omega_0^2 - \omega^2)}$$

• Plotted with:

$$\frac{F_0}{m} = 1, \ w_0 = 1$$

$$A(\omega) = \frac{1}{|\omega_0^2 - \omega^2|}$$

• Recall that for $\omega = \omega_0$, the amplitude grows without bound.

- With damping (on the blackboard)
- Desmos illustration