Today

- Forced vibrations
- Newton's 2nd Law with external forcing.
- Forced mass-spring system without damping away from resonance.
- Forced mass-spring system without damping at resonance.
- Forced mass-spring system with damping.
- Midterm (Feb 10, in class) - Everything up to and including Monday Feb 3 (systems of equations and review of eigenvectors).

Forced vibrations (3.8)

- Newton’s 2nd Law:

$$
m a=-k x-\gamma v+F(t)
$$

Forced vibrations (3.8)

- Newton’s 2nd Law:

$$
m a=-k x-\gamma v+F(t)
$$

Forced vibrations (3.8)

- Newton’s 2nd Law:

Forced vibrations (3.8)

- Newton's 2nd Law:

Forced vibrations (3.8)

- Newton's 2nd Law:

Forced vibrations (3.8)

- Newton's 2nd Law:

- Forced vibrations - nonhomogeneous linear equation with constant coefficients.

Forced vibrations (3.8)

- Newton's 2nd Law:

- Forced vibrations - nonhomogeneous linear equation with constant coefficients.
- Building during earthquake, tuning fork near instrument, car over washboard road, polar bond under EM stimulus (classical, not quantum).

Forced vibrations (3.8)

- Without damping $(\gamma=0)$.

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

- For what value(s) of w does this equation equation have an unbounded solution?
(A) $w=\operatorname{sqrt}(k / m)$
(B) $w=m / F_{0}$
(C) $\mathrm{w}=(\mathrm{k} / \mathrm{m})^{2}$
(D) $w=2 \pi$

Forced vibrations (3.8)

- Without damping $(\gamma=0)$.

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

Forced vibrations (3.8)

- Without damping $(\gamma=0)$.

$$
\begin{aligned}
& m x^{\prime \prime}+k x=F_{0} \cos (\omega t) \\
& m x^{\prime \prime}+k x=0
\end{aligned}
$$

Forced vibrations (3.8)

- Without damping $(\gamma=0)$.

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

$$
m x^{\prime \prime}+k x=0
$$

$$
x_{h}(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right)
$$

Forced vibrations (3.8)

- Without damping $(\gamma=0)$.

$$
\begin{aligned}
& m x^{\prime \prime}+k x=F_{0} \cos (\omega t) \\
& m x^{\prime \prime}+k x=0 \\
& x_{h}(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right) \quad \omega_{0}=?
\end{aligned}
$$

Forced vibrations (3.8)

- Without damping $(\gamma=0)$.

$$
\begin{aligned}
& m x^{\prime \prime}+k x=F_{0} \cos (\omega t) \\
& m x^{\prime \prime}+k x=0 \\
& x_{h}(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}}
\end{aligned}
$$

Forced vibrations (3.8)

- Without damping $(\gamma=0)$.

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

$$
m x^{\prime \prime}+k x=0
$$

$$
x_{h}(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}}
$$

natural frequency

Forced vibrations (3.8)

- Without damping $(\gamma=0)$.

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

$$
m x^{\prime \prime}+k x=0
$$

$$
x_{h}(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right)
$$

- Case 1: $\quad \omega \neq \omega_{0}$
$\omega_{0}=\sqrt{\frac{k}{m}}$
natural frequency

Forced vibrations (3.8)

- Without damping $(\gamma=0)$.

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

$$
m x^{\prime \prime}+k x=0
$$

$$
x_{h}(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}}
$$

- Case 1: $\quad \omega \neq \omega_{0}$

$$
x_{p}(t)=A \cos (\omega t)+B \sin (\omega t)
$$

Forced vibrations (3.8)

- Without damping $(\gamma=0)$.

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

$$
m x^{\prime \prime}+k x=0
$$

$$
x_{h}(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}}
$$

- Case 1: $\quad \omega \neq \omega_{0}$

$$
\begin{aligned}
& x_{p}(t)=A \cos (\omega t)+B \sin (\omega t) \\
& A=?, B=?
\end{aligned}
$$

Forced vibrations (3.8)

- Without damping $(\gamma=0)$.

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

$$
m x^{\prime \prime}+k x=0
$$

$$
x_{h}(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}}
$$

- Case 1: $\quad \omega \neq \omega_{0}$

$$
\begin{aligned}
x_{p}(t) & =A \cos (\omega t)+B \sin (\omega t) \\
x_{p}^{\prime \prime}(t) & =-\omega^{2} A \cos (\omega t)-\omega^{2} B \sin (\omega t)
\end{aligned}
$$

Forced vibrations (3.8)

- Without damping $(\gamma=0)$.

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

$$
m x^{\prime \prime}+k x=0
$$

$$
x_{h}(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}}
$$

- Case 1: $\quad \omega \neq \omega_{0}$

$$
\begin{aligned}
& x_{p}(t)=A \cos (\omega t)+B \sin (\omega t) \\
& x_{p}^{\prime \prime}(t)=-\omega^{2} A \cos (\omega t)-\omega^{2} B \sin (\omega t) \\
& m x_{p}^{\prime \prime}+k x_{p}=
\end{aligned}
$$

Forced vibrations (3.8)

- Without damping $(\gamma=0)$.

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

$$
m x^{\prime \prime}+k x=0
$$

$$
x_{h}(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}}
$$

- Case 1: $\quad \omega \neq \omega_{0}$

$$
\begin{aligned}
& x_{p}(t)=A \cos (\omega t)+B \sin (\omega t) \\
& x_{p}^{\prime \prime}(t)=-\omega^{2} A \cos (\omega t)-\omega^{2} B \sin (\omega t) \\
& m x_{p}^{\prime \prime}+k x_{p}=\left(k-\omega^{2} m\right) A \cos (\omega t)+\left(k-\omega^{2} m\right) B \sin (\omega t)
\end{aligned}
$$

Forced vibrations (3.8)

- Without damping $(\gamma=0)$.

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

$$
m x^{\prime \prime}+k x=0
$$

$$
x_{h}(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}}
$$

- Case 1: $\quad \omega \neq \omega_{0}$

$$
\begin{aligned}
& x_{p}(t)=A \cos (\omega t)+B \sin (\omega t) \\
& x_{p}^{\prime \prime}(t)=-\omega^{2} A \cos (\omega t)-\omega^{2} B \sin (\omega t) \\
& m x_{p}^{\prime \prime}+k x_{p}=\left(k-\omega^{2} m\right) A \cos (\omega t)+\left(k-\omega^{2} m\right) B \sin (\omega t) \\
& \quad=F_{0} \cos (\omega t)
\end{aligned}
$$

Forced vibrations (3.8)

- Without damping $(\gamma=0)$.

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

$$
m x^{\prime \prime}+k x=0
$$

$$
x_{h}(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}}
$$

- Case 1: $\quad \omega \neq \omega_{0}$

$$
\begin{aligned}
& x_{p}(t)=A \cos (\omega t)+B \sin (\omega t) \\
& x_{p}^{\prime \prime}(t)=-\omega^{2} A \cos (\omega t)-\omega^{2} B \sin (\omega t) \\
& m x_{p}^{\prime \prime}+k x_{p}=\left(k-\omega^{2} m\right) A \cos (\omega t)+\left(k-\omega^{2} m\right) B \sin (\omega t) \\
& \quad=F_{0} \cos (\omega t) \Rightarrow A=\frac{F_{0}}{\left(k-\omega^{2} m\right)}
\end{aligned}
$$

Forced vibrations (3.8)

- Without damping $(\gamma=0)$.

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

$$
m x^{\prime \prime}+k x=0
$$

$$
x_{h}(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}}
$$

- Case 1: $\quad \omega \neq \omega_{0}$

$$
\begin{aligned}
& x_{p}(t)=A \cos (\omega t)+B \sin (\omega t) \\
& x_{p}^{\prime \prime}(t)=-\omega^{2} A \cos (\omega t)-\omega^{2} B \sin (\omega t) \\
& m x_{p}^{\prime \prime}+k x_{p}=\left(k-\omega^{2} m\right) A \cos (\omega t)+\left(k-\omega^{2} m\right) B \sin (\omega t) \\
& \quad=F_{0} \cos (\omega t) \Rightarrow A=\frac{F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)}
\end{aligned}
$$

Forced vibrations (3.8)

- Without damping $(\gamma=0)$.

$$
m x^{\prime \prime}+k x=F_{0} \cos (\omega t)
$$

$$
m x^{\prime \prime}+k x=0
$$

$$
x_{h}(t)=C_{1} \cos \left(\omega_{0} t\right)+C_{2} \sin \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}}
$$

- Case 1: $\quad \omega \neq \omega_{0}$

$$
\begin{aligned}
& x_{p}(t)=A \cos (\omega t)+B \sin (\omega t) \\
& x_{p}^{\prime \prime}(t)=-\omega^{2} A \cos (\omega t)-\omega^{2} B \sin (\omega t) \\
& m x_{p}^{\prime \prime}+k x_{p}=\left(k-\omega^{2} m\right) A \cos (\omega t)+\left(k-\omega^{2} m\right) B \sin (\omega t) \\
& \quad=F_{0} \cos (\omega t) \Rightarrow A=\frac{F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)}, B=0
\end{aligned}
$$

Forced vibrations (3.8)

- Without damping $(\gamma=0), \omega \neq \omega_{0}$.
- Beats - long term behaviour includes both x_{h} and x_{p}
- On the board.

Forced vibrations (3.8)

- Without damping $(\gamma=0), \omega \neq \omega_{0}$.
- Beats - long term behaviour includes both x_{h} and x_{p}
- On the board.

Forced vibrations (3.8)

- Case 2: $\omega=\omega_{0}$

Forced vibrations (3.8)

- Case 2: $\quad \omega=\omega_{0}$

$$
m x^{\prime \prime}+k x=F_{0} \cos \left(\omega_{0} t\right)
$$

$$
\omega_{0}=\sqrt{\frac{k}{m}}
$$

Forced vibrations (3.8)

- Case 2: $\quad \omega=\omega_{0}$

$$
x^{\prime \prime}+\omega_{0}^{2} x=\frac{F_{0}}{m} \cos \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}}
$$

Forced vibrations (3.8)

- Case 2: $\quad \omega=\omega_{0}$

$$
\begin{array}{ll}
x^{\prime \prime}+\omega_{0}^{2} x=\frac{F_{0}}{m} \cos \left(\omega_{0} t\right) & \omega_{0}=\sqrt{\frac{k}{m}} \\
x_{p}(t)=t\left(A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)\right) &
\end{array}
$$

Forced vibrations (3.8)

- Case 2: $\quad \omega=\omega_{0}$

$$
\begin{aligned}
& x^{\prime \prime}+\omega_{0}^{2} x=\frac{F_{0}}{m} \cos \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}} \\
& x_{p}(t)=t\left(A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)\right) \\
& x_{p}^{\prime}(t)=A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)
\end{aligned}
$$

Forced vibrations (3.8)

- Case 2: $\quad \omega=\omega_{0}$

$$
\begin{aligned}
& x^{\prime \prime}+\omega_{0}^{2} x=\frac{F_{0}}{m} \cos \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}} \\
& x_{p}(t)=t\left(A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)\right) \\
& x_{p}^{\prime}(t)=A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right) \\
& \quad+t\left(-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right)\right)
\end{aligned}
$$

Forced vibrations (3.8)

- Case 2: $\quad \omega=\omega_{0}$

$$
\begin{aligned}
& x^{\prime \prime}+\omega_{0}^{2} x=\frac{F_{0}}{m} \cos \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}} \\
& x_{p}(t)=t\left(A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)\right) \\
& \begin{aligned}
x_{p}^{\prime}(t) & =A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right) \\
& +t\left(-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right)\right)
\end{aligned} \\
& x_{p}^{\prime \prime}(t)=-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right)
\end{aligned}
$$

Forced vibrations (3.8)

- Case 2: $\quad \omega=\omega_{0}$

$$
\begin{aligned}
& x^{\prime \prime}+\omega_{0}^{2} x=\frac{F_{0}}{m} \cos \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}} \\
& x_{p}(t)=t\left(A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)\right) \\
& x_{p}^{\prime}(t)=A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right) \\
& \quad+t\left(-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right)\right) \\
& \begin{aligned}
x_{p}^{\prime \prime}(t) & =-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right) \\
& +\left(-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right)\right)
\end{aligned}
\end{aligned}
$$

Forced vibrations (3.8)

- Case 2: $\quad \omega=\omega_{0}$

$$
\begin{aligned}
& x^{\prime \prime}+\omega_{0}^{2} x=\frac{F_{0}}{m} \cos \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}} \\
& x_{p}(t)=t\left(A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)\right) \\
& \begin{array}{r}
x_{p}^{\prime}(t)
\end{array}=A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right) \\
& \quad+t\left(-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right)\right) \\
& \left.\begin{array}{r}
x_{p}^{\prime \prime}(t)
\end{array}\right)=-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right) \\
& +\left(-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right)\right) \\
& \quad+t\left(-\omega_{0}^{2} A \cos \left(\omega_{0} t\right)-\omega_{0}^{2} B \sin \left(\omega_{0} t\right)\right)
\end{aligned}
$$

Forced vibrations (3.8)

- Case 2: $\quad \omega=\omega_{0}$

$$
\begin{aligned}
& x^{\prime \prime}+\omega_{0}^{2} x=\frac{F_{0}}{m} \cos \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}} \\
& x_{p}(t)=\frac{t\left(A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)\right)}{x_{p}^{\prime}(t)}=\begin{array}{r}
A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right) \\
\quad+t\left(-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right)\right) \\
\begin{aligned}
x_{p}^{\prime \prime}(t) & =-\omega_{0} A \sin \left(\omega_{0} t\right)
\end{aligned}+\omega_{0} B \cos \left(\omega_{0} t\right) \\
+\left(-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right)\right) \\
\\
+t\left(-\omega_{0}^{2} A \cos \left(\omega_{0} t\right)-\omega_{0}^{2} B \sin \left(\omega_{0} t\right)\right)
\end{array}
\end{aligned}
$$

Forced vibrations (3.8)

- Case 2: $\quad \omega=\omega_{0}$

$$
\begin{aligned}
& x^{\prime \prime}+\omega_{0}^{2} x=\frac{F_{0}}{m} \cos \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}} \\
& x_{p}(t)=\frac{t\left(A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)\right)}{x_{p}^{\prime}(t)}=\begin{array}{r}
A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right) \\
\quad+t\left(-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right)\right) \\
\begin{aligned}
& x_{p}^{\prime \prime}(t)=-\omega_{0} A \sin \left(\omega_{0} t\right) \\
&+\omega_{0} B \cos \left(\omega_{0} t\right)
\end{aligned} \\
+\left(-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right)\right) \\
\quad+t\left(-\omega_{0}^{2} A \cos \left(\omega_{0} t\right)-\omega_{0}^{2} B \sin \left(\omega_{0} t\right)\right)
\end{array}
\end{aligned}
$$

Forced vibrations (3.8)

- Case 2: $\quad \omega=\omega_{0}$

$$
\begin{aligned}
& \begin{aligned}
& x^{\prime \prime}+\omega_{0}^{2} x=\frac{F_{0}}{m} \cos \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}} \\
& x_{p}(t)= t\left(A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)\right) \\
& x_{p}^{\prime}(t)=A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right) \\
&+t\left(-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right)\right)
\end{aligned} \\
& \begin{array}{r}
x_{p}^{\prime \prime}(t)=-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right) \\
+\left(-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right)\right)
\end{array} \\
& \quad+t\left(-\omega_{0}^{2} A \cos \left(\omega_{0} t\right)-\omega_{0}^{2} B \sin \left(\omega_{0} t\right)\right)
\end{aligned} \begin{array}{r}
\begin{array}{r}
A=0 \\
B=\frac{F_{0}}{2 \omega_{0} m}=\frac{F_{0}}{2 \sqrt{k m}}
\end{array}
\end{array}
$$

Forced vibrations (3.8)

- Case 2: $\quad \omega=\omega_{0}$

$$
\begin{aligned}
& \begin{aligned}
& x^{\prime \prime}+\omega_{0}^{2} x=\frac{F_{0}}{m} \cos \left(\omega_{0} t\right) \quad \omega_{0}=\sqrt{\frac{k}{m}} \\
& x_{p}(t)= t\left(A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right)\right) \\
& x_{p}^{\prime}(t)= A \cos \left(\omega_{0} t\right)+B \sin \left(\omega_{0} t\right) \\
&+t\left(-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right)\right)
\end{aligned} \\
& \begin{array}{r}
x_{p}^{\prime \prime}(t)=-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right) \\
+\left(-\omega_{0} A \sin \left(\omega_{0} t\right)+\omega_{0} B \cos \left(\omega_{0} t\right)\right)
\end{array} \\
& \quad+\frac{t\left(-\omega_{0}^{2} A \cos \left(\omega_{0} t\right)\right.}{\left.\omega_{0}^{2} B \sin \left(\omega_{0} t\right)\right)} \\
& \begin{array}{r}
A=0 \\
B=
\end{array} \\
& x_{p}(t)=\frac{F_{0}}{2 \omega_{0} m}=\frac{F_{0}}{2 \sqrt{k m}} t \sin \left(\omega_{0} t\right)
\end{aligned}
$$

Forced vibrations (3.8)

- Without damping $(\gamma=0), \omega \neq \omega_{0}$.
- Long term behaviour $-\mathrm{x}_{\mathrm{p}}$ grows unbounded, swamping out x_{h}.

Forced vibrations (3.8)

- Plot of the amplitude of the particular solution as a function of ω.
- Calculated:

$$
A=\frac{F_{0}}{m\left(\omega_{0}^{2}-\omega^{2}\right)}
$$

- Plotted with:

$$
\begin{aligned}
\frac{F_{0}}{m} & =1, w_{0}=1 \\
A(\omega) & =\frac{1}{\left|\omega_{0}^{2}-\omega^{2}\right|}
\end{aligned}
$$

- Recall that for $\omega=\omega_{0}$, the amplitude grows without bound.

Forced vibrations (3.8)

- With damping (on the blackboard)
- Desmos illustration

