Today

- Modeling with delta-function forcing (tanks, springs)
- Convolution
- Transfer functions

Delta-function forcing (6.5)

- Water with $\mathrm{c}_{\mathrm{in}}=2 \mathrm{~g} / \mathrm{L}$ of sugar enters a tank at a rate of $\mathrm{r}=1 \mathrm{~L} / \mathrm{min}$. The initially sugar-free tank holds $\mathrm{V}=5 \mathrm{~L}$ and the contents are well-mixed. Water drains from the tank at a rate r . At $\mathrm{t}_{\text {cube }}=3 \mathrm{~min}$, a sugar cube of mass $\mathrm{m}_{\text {cube }}=3 \mathrm{~g}$ is dropped into the tank.

Delta-function forcing (6.5)

- Water with $\mathrm{c}_{\mathrm{in}}=2 \mathrm{~g} / \mathrm{L}$ of sugar enters a tank at a rate of $\mathrm{r}=1 \mathrm{~L} / \mathrm{min}$. The initially sugar-free tank holds $V=5 L$ and the contents are well-mixed. Water drains from the tank at a rate r . At $\mathrm{t}_{\text {cube }}=3 \mathrm{~min}$, a sugar cube of mass $\mathrm{m}_{\text {cube }}=3 \mathrm{~g}$ is dropped into the tank.
- Sketch the mass of salt in the tank as a function of time (from intuition).

Delta-function forcing (6.5)

- Water with $\mathrm{c}_{\mathrm{in}}=2 \mathrm{~g} / \mathrm{L}$ of sugar enters a tank at a rate of $\mathrm{r}=1 \mathrm{~L} / \mathrm{min}$. The initially sugar-free tank holds $V=5 L$ and the contents are well-mixed. Water drains from the tank at a rate r . At $\mathrm{t}_{\text {cube }}=3 \mathrm{~min}$, a sugar cube of mass $\mathrm{m}_{\text {cube }}=3 \mathrm{~g}$ is dropped into the tank.
- Sketch the mass of salt in the tank as a function of time (from intuition).
- Write down an ODE for the mass of sugar in the tank as a function of time.

Delta-function forcing (6.5)

- Water with $\mathrm{c}_{\mathrm{in}}=2 \mathrm{~g} / \mathrm{L}$ of sugar enters a tank at a rate of $\mathrm{r}=1 \mathrm{~L} / \mathrm{min}$. The initially sugar-free tank holds $V=5 L$ and the contents are well-mixed. Water drains from the tank at a rate r . At $\mathrm{t}_{\text {cube }}=3 \mathrm{~min}$, a sugar cube of mass $\mathrm{m}_{\text {cube }}=3 \mathrm{~g}$ is dropped into the tank.
- Sketch the mass of salt in the tank as a function of time (from intuition).
- Write down an ODE for the mass of sugar in the tank as a function of time.

$$
m^{\prime}=r c_{i n}-\frac{r}{V} m+m_{c u b e} \delta\left(t-t_{c u b e}\right)
$$

Delta-function forcing (6.5)

- Water with $\mathrm{c}_{\mathrm{in}}=2 \mathrm{~g} / \mathrm{L}$ of sugar enters a tank at a rate of $\mathrm{r}=1 \mathrm{~L} / \mathrm{min}$. The initially sugar-free tank holds $\mathrm{V}=5 \mathrm{~L}$ and the contents are well-mixed. Water drains from the tank at a rate r . At $\mathrm{t}_{\text {cube }}=3 \mathrm{~min}$, a sugar cube of mass $\mathrm{m}_{\text {cube }}=3 \mathrm{~g}$ is dropped into the tank.
- Sketch the mass of salt in the tank as a function of time (from intuition).
- Write down an ODE for the mass of sugar in the tank as a function of time.

$$
m^{\prime}=r c_{i n}-\frac{r}{V} m+m_{c u b e} \delta\left(t-t_{c u b e}\right)
$$

- Note: $\delta(\mathrm{t})$ has units of $1 /$ time.

Delta-function forcing (6.5)

- Water with $\mathrm{c}_{\mathrm{in}}=2 \mathrm{~g} / \mathrm{L}$ of sugar enters a tank at a rate of $\mathrm{r}=1 \mathrm{~L} / \mathrm{min}$. The initially sugar-free tank holds $V=5 L$ and the contents are well-mixed. Water drains from the tank at a rate r . At $\mathrm{t}_{\text {cube }}=3 \mathrm{~min}$, a sugar cube of mass $\mathrm{m}_{\text {cube }}=3 \mathrm{~g}$ is dropped into the tank.
- Sketch the mass of salt in the tank as a function of time (from intuition).
- Write down an ODE for the mass of sugar in the tank as a function of time.

$$
\begin{aligned}
m^{\prime} & =r c_{i n}-\frac{r}{V} m+m_{\text {cube }} \delta\left(t-t_{c u b e}\right) \\
m^{\prime} & =2-\frac{1}{5} m+3 \delta(t-3)
\end{aligned}
$$

Delta-function forcing (6.5)

- Water with $\mathrm{c}_{\mathrm{in}}=2 \mathrm{~g} / \mathrm{L}$ of sugar enters a tank at a rate of $\mathrm{r}=1 \mathrm{~L} / \mathrm{min}$. The initially sugar-free tank holds $\mathrm{V}=5 \mathrm{~L}$ and the contents are well-mixed. Water drains from the tank at a rate r . At $\mathrm{t}_{\text {cube }}=3 \mathrm{~min}$, a sugar cube of mass $\mathrm{m}_{\text {cube }}=3 \mathrm{~g}$ is dropped into the tank.
- Sketch the mass of salt in the tank as a function of time (from intuition).
- Write down an ODE for the mass of sugar in the tank as a function of time.

$$
\begin{aligned}
m^{\prime} & =r c_{i n}-\frac{r}{V} m+m_{\text {cube }} \delta\left(t-t_{c u b e}\right) \\
m^{\prime} & =2-\frac{1}{5} m+3 \delta(t-3)
\end{aligned}
$$

- Solve the ODE.

Delta-function forcing (6.5)

- Water with $\mathrm{c}_{\mathrm{in}}=2 \mathrm{~g} / \mathrm{L}$ of sugar enters a tank at a rate of $\mathrm{r}=1 \mathrm{~L} / \mathrm{min}$. The initially sugar-free tank holds $\mathrm{V}=5 \mathrm{~L}$ and the contents are well-mixed. Water drains from the tank at a rate r . At $\mathrm{t}_{\text {cube }}=3 \mathrm{~min}$, a sugar cube of mass $\mathrm{m}_{\text {cube }}=3 \mathrm{~g}$ is dropped into the tank.
- Sketch the mass of salt in the tank as a function of time (from intuition).
- Write down an ODE for the mass of sugar in the tank as a function of time.

$$
\begin{aligned}
m^{\prime} & =r c_{i n}-\frac{r}{V} m+m_{\text {cube }} \delta\left(t-t_{c u b e}\right) \\
m^{\prime} & =2-\frac{1}{5} m+3 \delta(t-3)
\end{aligned}
$$

- Solve the ODE.

$$
m(t)=10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5}
$$

Delta-function forcing (6.5)

- Water with $\mathrm{c}_{\mathrm{in}}=2 \mathrm{~g} / \mathrm{L}$ of sugar enters a tank at a rate of $\mathrm{r}=1 \mathrm{~L} / \mathrm{min}$. The initially sugar-free tank holds $\mathrm{V}=5 \mathrm{~L}$ and the contents are well-mixed. Water drains from the tank at a rate r . At $\mathrm{t}_{\text {cube }}=3 \mathrm{~min}$, a sugar cube of mass $\mathrm{m}_{\text {cube }}=3 \mathrm{~g}$ is dropped into the tank.
- Sketch the mass of salt in the tank as a function of time (from intuition).
- Write down an ODE for the mass of sugar in the tank as a function of time.

$$
\begin{aligned}
m^{\prime} & =r c_{i n}-\frac{r}{V} m+m_{\text {cube }} \delta\left(t-t_{c u b e}\right) \\
m^{\prime} & =2-\frac{1}{5} m+3 \delta(t-3)
\end{aligned}
$$

- Solve the ODE.

$$
m(t)=10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5}
$$

- Sketch the solution to the ODE. How would
 it differ if $\mathrm{t}_{\text {cube }}=10 \mathrm{~min}$?

Delta-function forcing (6.5)

- Sketch the solution to the ODE.

$$
m(t)=10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5}
$$

Delta-function forcing (6.5)

- Sketch the solution to the ODE.

$$
\begin{aligned}
m(t) & =10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5} \\
& =\left\{\begin{array}{cl}
10\left(1-e^{-t / 5}\right) & \text { for } t<3 \\
10-\left(10-3 e^{3 / 5}\right) e^{-t / 5} & \text { for } t \geq 3
\end{array}\right.
\end{aligned}
$$

Delta-function forcing (6.5)

- Sketch the solution to the ODE.

$$
\begin{aligned}
m(t) & =10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5} \\
& =\left\{\begin{array}{cl}
10\left(1-e^{-t / 5}\right) & \text { for } t<3 \\
10-\left(10-3 e^{3 / 5}\right) e^{-t / 5} & \text { for } t \geq 3
\end{array}\right.
\end{aligned}
$$

Delta-function forcing (6.5)

- Sketch the solution to the ODE.

$$
m(t)=10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5}
$$

$$
=\left\{\begin{array}{cc}
10\left(1-e^{-t / 5}\right) & \text { for } t<3 \\
10-\left(10-3 e^{3 / 5}\right) e^{-t / 5} & \text { for } t \geq 3
\end{array}\right.
$$

Delta-function forcing (6.5)

- Sketch the solution to the ODE.

$$
\begin{aligned}
m(t) & =10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5} \\
& =\left\{\begin{array}{cl}
10\left(1-e^{-t / 5}\right) & \text { for } t<3 \\
10-\left(10-3 e^{3 / 5}\right) e^{-t / 5} & \text { for } t \geq 3
\end{array}\right.
\end{aligned}
$$

Delta-function forcing (6.5)

- Sketch the solution to the ODE.

$$
\begin{aligned}
m(t) & =10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5} \\
& =\left\{\begin{array}{cl}
10\left(1-e^{-t / 5}\right) & \text { for } t<3 \\
10-\left(10-3 e^{3 / 5}\right) e^{-t / 5} & \text { for } t \geq 3
\end{array}\right.
\end{aligned}
$$

Delta-function forcing (6.5)

- Sketch the solution to the ODE.

$$
\begin{aligned}
m(t) & =10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5} \\
& =\left\{\begin{array}{cl}
10\left(1-e^{-t / 5}\right) & \text { for } t<3 \\
10-\left(10-3 e^{3 / 5}\right) e^{-t / 5} & \text { for } t \geq 3
\end{array}\right.
\end{aligned}
$$

Delta-function forcing (6.5)

- Sketch the solution to the ODE.

$$
\begin{aligned}
m(t) & =10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5} \\
& =\left\{\begin{array}{cl}
10\left(1-e^{-t / 5}\right) & \text { for } t<3 \\
10-\left(10-3 e^{3 / 5}\right) e^{-t / 5} & \text { for } t \geq 3
\end{array}\right.
\end{aligned}
$$

Delta-function forcing (6.5)

- Sketch the solution to the ODE.

$$
\begin{aligned}
m(t) & =10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5} \\
& =\left\{\begin{array}{cl}
10\left(1-e^{-t / 5}\right) & \text { for } t<3 \\
10-\left(10-3 e^{3 / 5}\right) e^{-t / 5} & \text { for } t \geq 3
\end{array}\right.
\end{aligned}
$$

Delta-function forcing (6.5)

- Sketch the solution to the ODE.

$$
\begin{aligned}
m(t) & =10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5} \\
& =\left\{\begin{array}{cl}
10\left(1-e^{-t / 5}\right) & \text { for } t<3 \\
10-\left(10-3 e^{3 / 5}\right) e^{-t / 5} & \text { for } t \geq 3
\end{array}\right.
\end{aligned}
$$

Delta-function forcing (6.5)

- Sketch the solution to the ODE.

$$
\begin{aligned}
m(t) & =10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5} \\
& =\left\{\begin{array}{cl}
10\left(1-e^{-t / 5}\right) & \text { for } t<3 \\
10-\left(10-3 e^{3 / 5}\right) e^{-t / 5} & \text { for } t \geq 3
\end{array}\right.
\end{aligned}
$$

Delta-function forcing (6.5)

- Sketch the solution to the ODE.

$$
\begin{aligned}
m(t) & =10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5} \\
& =\left\{\begin{array}{cl}
10\left(1-e^{-t / 5}\right) & \text { for } t<3 \\
10-\left(10-3 e^{3 / 5}\right) e^{-t / 5} & \text { for } t \geq 3
\end{array}\right.
\end{aligned}
$$

- How would it differ if $\mathrm{t}_{\text {cube }}=10 \mathrm{~min}$?

Delta-function forcing (6.5)

- Sketch the solution to the ODE.

$$
\begin{aligned}
m(t) & =10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5} \\
& =\left\{\begin{array}{cl}
10\left(1-e^{-t / 5}\right) & \text { for } t<3 \\
10-\left(10-3 e^{3 / 5}\right) e^{-t / 5} & \text { for } t \geq 3
\end{array}\right.
\end{aligned}
$$

- How would it differ if $\mathrm{t}_{\text {cube }}=10 \mathrm{~min}$?

Delta-function forcing (6.5)

- Sketch the solution to the ODE.

$$
\begin{aligned}
m(t) & =10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5} \\
& =\left\{\begin{array}{cl}
10\left(1-e^{-t / 5}\right) & \text { for } t<3 \\
10-\left(10-3 e^{3 / 5}\right) e^{-t / 5} & \text { for } t \geq 3
\end{array}\right.
\end{aligned}
$$

- How would it differ if $\mathrm{t}_{\text {cube }}=10 \mathrm{~min}$?

Delta-function forcing (6.5)

- Sketch the solution to the ODE.

$$
\begin{aligned}
m(t) & =10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5} \\
& =\left\{\begin{array}{cl}
10\left(1-e^{-t / 5}\right) & \text { for } t<3 \\
10-\left(10-3 e^{3 / 5}\right) e^{-t / 5} & \text { for } t \geq 3
\end{array}\right.
\end{aligned}
$$

- How would it differ if $\mathrm{t}_{\text {cube }}=10 \mathrm{~min}$?

Delta-function forcing (6.5)

- Sketch the solution to the ODE.

$$
\begin{aligned}
m(t) & =10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5} \\
& =\left\{\begin{array}{cl}
10\left(1-e^{-t / 5}\right) & \text { for } t<3 \\
10-\left(10-3 e^{3 / 5}\right) e^{-t / 5} & \text { for } t \geq 3
\end{array}\right.
\end{aligned}
$$

- How would it differ if $\mathrm{t}_{\text {cube }}=10 \mathrm{~min}$?

Delta-function forcing (6.5)

- Sketch the solution to the ODE.

$$
\begin{aligned}
m(t) & =10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5} \\
& =\left\{\begin{array}{cl}
10\left(1-e^{-t / 5}\right) & \text { for } t<3 \\
10-\left(10-3 e^{3 / 5}\right) e^{-t / 5} & \text { for } t \geq 3
\end{array}\right.
\end{aligned}
$$

- How would it differ if $\mathrm{t}_{\text {cube }}=10 \mathrm{~min}$?

Delta-function forcing (6.5)

- A hammer hits a mass-spring system imparting an impulse of $I_{0}=2 \mathrm{~N} \mathrm{~s}$ at $t=5 \mathrm{~s}$. The mass of the block is $m=1 \mathrm{~kg}$. The drag coefficient is $\gamma=2 \mathrm{~kg} / \mathrm{s}$ and the spring constant is $k=10 \mathrm{~kg} / \mathrm{s}^{2}$. The mass is initially at $y(0)=2 \mathrm{~m}$ with velocity $y^{\prime}(0)=0 \mathrm{~m} / \mathrm{s}$.

Delta-function forcing (6.5)

- A hammer hits a mass-spring system imparting an impulse of $I_{0}=2 \mathrm{~N} \mathrm{~s}$ at $t=5 \mathrm{~s}$. The mass of the block is $m=1 \mathrm{~kg}$. The drag coefficient is $\gamma=2 \mathrm{~kg} / \mathrm{s}$ and the spring constant is $k=10 \mathrm{~kg} / \mathrm{s}^{2}$. The mass is initially at $y(0)=2 \mathrm{~m}$ with velocity $y^{\prime}(0)=0 \mathrm{~m} / \mathrm{s}$.

Delta-function forcing (6.5)

- A hammer hits a mass-spring system imparting an impulse of $I_{0}=2 \mathrm{~N} \mathrm{~s}$ at $t=5 \mathrm{~s}$. The mass of the block is $m=1 \mathrm{~kg}$. The drag coefficient is $\gamma=2 \mathrm{~kg} / \mathrm{s}$ and the spring constant is $k=10 \mathrm{~kg} / \mathrm{s}^{2}$. The mass is initially at $y(0)=2 \mathrm{~m}$ with velocity $y^{\prime}(0)=0 \mathrm{~m} / \mathrm{s}$.
- Write down an equation for the position of the mass.

Delta-function forcing (6.5)

- A hammer hits a mass-spring system imparting an impulse of $I_{0}=2 \mathrm{~N} \mathrm{~s}$ at $t=5 \mathrm{~s}$. The mass of the block is $m=1 \mathrm{~kg}$. The drag coefficient is $\gamma=2 \mathrm{~kg} / \mathrm{s}$ and the spring constant is $k=10 \mathrm{~kg} / \mathrm{s}^{2}$. The mass is initially at $y(0)=2 \mathrm{~m}$ with velocity $y^{\prime}(0)=0 \mathrm{~m} / \mathrm{s}$.
- Write down an equation for the position of the mass.
(A) $y^{\prime \prime}+2 y^{\prime}+10 y=2 u_{0}(t)$
(B) $y^{\prime \prime}+2 y^{\prime}+10 y=2 u_{5}(t)$
(C) $y^{\prime \prime}+2 y^{\prime}+10 y=2 \delta(t)$
(D) $y^{\prime \prime}+2 y^{\prime}+10 y=2 \delta(t-5)$

Delta-function forcing (6.5)

- A hammer hits a mass-spring system imparting an impulse of $I_{0}=2 \mathrm{~N} \mathrm{~s}$ at $t=5 \mathrm{~s}$. The mass of the block is $m=1 \mathrm{~kg}$. The drag coefficient is $\gamma=2 \mathrm{~kg} / \mathrm{s}$ and the spring constant is $k=10 \mathrm{~kg} / \mathrm{s}^{2}$. The mass is initially at $y(0)=2 \mathrm{~m}$ with velocity $y^{\prime}(0)=0 \mathrm{~m} / \mathrm{s}$.
- Write down an equation for the position of the mass.

$$
\begin{aligned}
\text { (A) } y^{\prime \prime}+2 y^{\prime}+10 y & =2 u_{0}(t) \\
\text { (B) } y^{\prime \prime}+2 y^{\prime}+10 y & =2 u_{5}(t) \\
\text { (C) } y^{\prime \prime}+2 y^{\prime}+10 y & =2 \delta(t) \\
\text { (D) } y^{\prime \prime}+2 y^{\prime}+10 y & =2 \delta(t-5)
\end{aligned}
$$

Delta-function forcing (6.5)

- A hammer hits a mass-spring system imparting an impulse of $I_{0}=2 \mathrm{~N} \mathrm{~s}$ at $t=5 \mathrm{~s}$. The mass of the block is $m=1 \mathrm{~kg}$. The drag coefficient is $\gamma=2 \mathrm{~kg} / \mathrm{s}$ and the spring constant is $k=10 \mathrm{~kg} / \mathrm{s}^{2}$. The mass is initially at $y(0)=2 \mathrm{~m}$ with velocity $y^{\prime}(0)=0 \mathrm{~m} / \mathrm{s}$.
- Write down an equation for the position of the mass.

$$
\begin{aligned}
& \text { (A) } y^{\prime \prime}+2 y^{\prime}+10 y=2 u_{0}(t) \\
& \text { (B) } y^{\prime \prime}+2 y^{\prime}+10 y=2 u_{5}(t) \\
& \text { (C) } y^{\prime \prime}+2 y^{\prime}+10 y=2 \delta(t) \\
& \text { (D) } y^{\prime \prime}+2 y^{\prime}+10 y=2 \delta(t-5) \\
& s^{2} Y-2 s+2 s Y-4+10 Y=2 e^{-5 c}
\end{aligned}
$$

Delta-function forcing (6.5)

- A hammer hits a mass-spring system imparting an impulse of $I_{0}=2 \mathrm{~N} \mathrm{~s}$ at $t=5 \mathrm{~s}$. The mass of the block is $m=1 \mathrm{~kg}$. The drag coefficient is $\gamma=2 \mathrm{~kg} / \mathrm{s}$ and the spring constant is $k=10 \mathrm{~kg} / \mathrm{s}^{2}$. The mass is initially at $y(0)=2 \mathrm{~m}$ with velocity $y^{\prime}(0)=0 \mathrm{~m} / \mathrm{s}$.
- Write down an equation for the position of the mass.

\[

\]

Delta-function forcing (6.5)

- Inverting $\mathrm{Y}(\mathrm{s}) \ldots$ (go through this on your own)

$$
\begin{aligned}
Y(s) & =\frac{2\left(e^{-5 s}+s+2\right)}{s^{2}+2 s+10}=\frac{2 e^{-5 s}}{s^{2}+2 s+10}+2 \frac{s+2}{s^{2}+2 s+10} \\
& =\frac{2 e^{-5 s}}{s^{2}+2 s+10}+2 \frac{s+2}{(s+1)^{2}+9} \\
& =\frac{2 e^{-5 s}}{s^{2}+2 s+10}+2 \frac{s+1}{(s+1)^{2}+9}+\frac{2}{(s+1)^{2}+9} \\
& =\frac{2 e^{-5 s}}{s^{2}+2 s+10}+2 \frac{s+1}{(s+1)^{2}+9}+\frac{2}{3} \frac{3}{(s+1)^{2}+9} \\
& =\frac{2}{3} \frac{3 e^{-5 s}}{(s+1)^{2}+9}+2 \frac{s+1}{(s+1)^{2}+9}+\frac{2}{3} \frac{3}{(s+1)^{2}+9} \\
y(t) & =\frac{2}{\frac{3}{} u_{5}(t) e^{-(t-5)} \sin (3(t-5))+2 e^{-t} \cos (3 t)+\frac{2}{3} e^{-t} \sin (3 t)} \\
\text { particular solution from } \delta \text { forcing } & \text { homogeneous part }
\end{aligned}
$$

Convolution (6.6)

- We often end up with transforms to invert that are the product of two known transforms. For example,

$$
Y(s)=\frac{2}{s^{2}\left(s^{2}+4\right)}=\frac{1}{s^{2}} \cdot \frac{2}{s^{2}+4}
$$

Convolution (6.6)

- We often end up with transforms to invert that are the product of two known transforms. For example,

$$
Y(s)=\frac{2}{s^{2}\left(s^{2}+4\right)}=\frac{1}{s^{2}} \cdot \frac{2}{s^{2}+4}
$$

- Can we express the inverse of a product in terms of the known pieces?

$$
F(s) G(s)=\mathcal{L}\{? ?\}
$$

Convolution (6.6)

- We often end up with transforms to invert that are the product of two known transforms. For example,

$$
Y(s)=\frac{2}{s^{2}\left(s^{2}+4\right)}=\frac{1}{s^{2}} \cdot \frac{2}{s^{2}+4}
$$

- Can we express the inverse of a product in terms of the known pieces?

$$
\begin{gathered}
F(s) G(s)=\mathcal{L}\{? ?\} \\
F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t
\end{gathered}
$$

Convolution (6.6)

- We often end up with transforms to invert that are the product of two known transforms. For example,

$$
Y(s)=\frac{2}{s^{2}\left(s^{2}+4\right)}=\frac{1}{s^{2}} \cdot \frac{2}{s^{2}+4}
$$

- Can we express the inverse of a product in terms of the known pieces?

$$
\begin{aligned}
& F(s) G(s)=\mathcal{L}\{? ?\} \\
& F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t \\
& G(s)=\int_{0}^{\infty} e^{-s t} g(t) d t
\end{aligned}
$$

Convolution (6.6)

- We often end up with transforms to invert that are the product of two known transforms. For example,

$$
Y(s)=\frac{2}{s^{2}\left(s^{2}+4\right)}=\frac{1}{s^{2}} \cdot \frac{2}{s^{2}+4}
$$

- Can we express the inverse of a product in terms of the known pieces?

$$
\begin{aligned}
& \quad F(s) G(s)=\mathcal{L}\{? ?\} \\
& F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t \rightarrow \quad \rightarrow(s)=\int_{0}^{\infty} e^{-s \tau} f(\tau) d \tau \\
& G(s)=\int_{0}^{\infty} e^{-s t} g(t) d t
\end{aligned}
$$

Convolution (6.6)

- We often end up with transforms to invert that are the product of two known transforms. For example,

$$
Y(s)=\frac{2}{s^{2}\left(s^{2}+4\right)}=\frac{1}{s^{2}} \cdot \frac{2}{s^{2}+4}
$$

- Can we express the inverse of a product in terms of the known pieces?

$$
\begin{gathered}
F(s) G(s)=\mathcal{L}\{? ?\} \\
F(s)=\int_{0}^{\infty} e^{-s t} f(t) d t \quad \rightarrow \quad F(s)=\int_{0}^{\infty} e^{-s \tau} f(\tau) d \tau \\
G(s)=\int_{0}^{\infty} e^{-s t} g(t) d t \quad \rightarrow \quad G(s)=\int_{0}^{\infty} e^{-s w} g(w) d w
\end{gathered}
$$

Convolution (6.6)

$$
F(s) G(s)=\int_{0}^{\infty} e^{-s \tau} f(\tau) d \tau \int_{0}^{\infty} e^{-s w} g(w) d w
$$

Convolution (6.6)

$$
\begin{aligned}
F(s) G(s) & =\int_{0}^{\infty} e^{-s \tau} f(\tau) d \tau \int_{0}^{\infty} e^{-s w} g(w) d w \\
& =\int_{0}^{\infty} e^{-s w} g(w) \int_{0}^{\infty} e^{-s \tau} f(\tau) d \tau d w \\
& =\int_{0}^{\infty} g(w) \int_{0}^{\infty} e^{-s(\tau+w)} f(\tau) d \tau d w
\end{aligned}
$$

Replace τ using $u=\tau+w$ where w is constant in the inner integral.

$$
\begin{aligned}
& =\int_{0}^{\infty} g(w) \int_{w}^{\infty} e^{-s(u)} f(u-w) d u d w \\
& =\int_{0}^{\infty} \int_{w}^{\infty} e^{-s u} g(w) f(u-w) d u d w \\
& =\int_{a}^{b} \int_{c}^{d} e^{-s u} g(w) f(u-w) d w d u
\end{aligned}
$$

Convolution (6.6)

- What are the correct values for $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d ?

$$
\int_{0}^{\infty} \int_{w}^{\infty} e^{-s u} g(w) f(u-w) d u d w
$$

$$
=\int_{a}^{b} \int_{c}^{d} e^{-s u} g(w) f(u-w) d w d u
$$

Convolution (6.6)

- What are the correct values for a, b, c and d ?

$$
\begin{array}{rl}
\int_{0}^{\infty} \underbrace{\int_{w}^{\infty} e^{-s u} g(w) f(u-w) d u}_{\mathrm{W}=\mathrm{Constant}} & d w \\
& =\int_{a}^{b} \int_{c}^{d} e^{-s u} g(w) f(u-w) d w d u
\end{array}
$$

Convolution (6.6)

- What are the correct values for a, b, c and d ?

$$
\begin{aligned}
\int_{0}^{\infty} \underbrace{\int_{f_{w}}^{\infty} e^{-s u} g(w) f(u-w) d u}_{\mathrm{W}=\text { Constant }} & d w \\
& =\int_{a}^{b} \int_{c}^{d} e^{-s u} g(w) f(u-w) d w d u
\end{aligned}
$$

Convolution (6.6)

- What are the correct values for a, b, c and d ?

$$
\begin{array}{rl}
\int_{0}^{\infty} \underbrace{\stackrel{4}{s}_{\mathrm{s}}^{\infty} e^{-s u} g(w) f(u-w) d u}_{\mathrm{w}=\mathrm{Constant}} & d w \\
& =\int_{a}^{b} \int_{c}^{d} e^{-s u} g(w) f(u-w) d w d u
\end{array}
$$

Convolution (6.6)

- What are the correct values for a, b, c and d ?

$$
\begin{aligned}
\int_{0}^{\infty} & \underbrace{\int_{s}^{4} e^{-s u} g(w) f(u-w) d u}_{\mathrm{W}=\text { Constant }} \\
& d w \\
& d \int_{a}^{b} \int_{c}^{d} e^{-s u} g(w) f(u-w) d w d u
\end{aligned}
$$

Convolution (6.6)

- What are the correct values for a, b, c and d ?

$$
\begin{aligned}
\int_{0}^{\infty} & \underbrace{\int_{s}^{4} e^{-s u} g(w) f(u-w) d u}_{\mathrm{W}=\text { Constant }} \\
& d w \\
& d \int_{a}^{b} \int_{c}^{d} e^{-s u} g(w) f(u-w) d w d u
\end{aligned}
$$

Convolution (6.6)

- What are the correct values for a, b, c and d ?

$$
\begin{aligned}
\int_{0}^{\infty} \underbrace{\int_{s}^{\int_{w}} e^{-s u} g(w) f(u-w) d u}_{\mathrm{W}=\text { constant }} & d w \\
& =\int_{a}^{b} \int_{c}^{d} e^{-s u} g(w) f(u-w) d w d u
\end{aligned}
$$

Convolution (6.6)

- What are the correct values for a, b, c and d ?

$$
\begin{aligned}
& \int_{0}^{\infty} \underbrace{\int_{s}^{u_{w}} e^{-s u} g(w) f(u-w) d u}_{\mathrm{w}=\text { constant }} d w \\
&=\int_{a}^{b} \int_{c}^{d} e^{-s u} g(w) f(u-w) d w d u
\end{aligned}
$$

(A) Integrate in u from $\mathrm{a}=0$ to $\mathrm{b}=\infty$ and in w from $\mathrm{c}=\mathrm{u}, \mathrm{d}=\infty$.
(B) Integrate in u from $\mathrm{a}=0$ to $\mathrm{b}=\mathrm{w}$ and in w from $\mathrm{c}=0$ to $\mathrm{d}=\infty$.
(C) Integrate in u from $a=0$ to $b=\infty$ and in w from $c=0$ to $d=u$.
(D) Integrate in u from $\mathrm{a}=0$ to $\mathrm{b}=\infty$ and in w from $\mathrm{c}=\mathrm{w}$ to $\mathrm{d}=\infty$.
(E) Huh?

Convolution (6.6)

- What are the correct values for a, b, c and d ?

$$
\begin{aligned}
& \int_{0}^{\infty} \underbrace{\int_{s}^{\int_{w}} e^{-s u} g(w) f(u-w) d u}_{\mathrm{w}=\text { constant }} d w \\
& d \int_{a}^{b} \int_{c}^{d} e^{-s u} g(w) f(u-w) d w d u
\end{aligned}
$$

(A) Integrate in u from $\mathrm{a}=0$ to $\mathrm{b}=\infty$ and in w from $\mathrm{c}=\mathrm{u}, \mathrm{d}=\infty$.
(B) Integrate in u from $\mathrm{a}=0$ to $\mathrm{b}=\mathrm{w}$ and in w from $\mathrm{c}=0$ to $\mathrm{d}=\infty$.
$\mathcal{W}(\mathrm{C})$ Integrate in u from $\mathrm{a}=0$ to $\mathrm{b}=\infty$ and in w from $\mathrm{c}=0$ to $\mathrm{d}=\mathrm{u}$.
(D) Integrate in u from $\mathrm{a}=0$ to $\mathrm{b}=\infty$ and in w from $\mathrm{c}=\mathrm{w}$ to $\mathrm{d}=\infty$.
(E) Huh?

Convolution (6.6)

- What are the correct values for a, b, c and d ?

$$
\begin{aligned}
\int_{0}^{\infty} \int_{w}^{\infty} e^{-s u} g(w) f(u-w) d u & d w \\
& =\int_{a}^{b} \int_{c}^{d} e^{-s u} g(w) f(u-w) d w d u
\end{aligned}
$$

(A) Integrate in u from $\mathrm{a}=0$ to $\mathrm{b}=\infty$ and in w from $\mathrm{c}=\mathrm{u}, \mathrm{d}=\infty$.
(B) Integrate in u from $a=0$ to $\mathrm{b}=\mathrm{w}$ and in w from $\mathrm{c}=0$ to $\mathrm{d}=\infty$.
$\mathcal{W}(\mathrm{C})$ Integrate in u from $\mathrm{a}=0$ to $\mathrm{b}=\infty$ and in w from $\mathrm{c}=0$ to $\mathrm{d}=\mathrm{u}$.
(D) Integrate in u from $\mathrm{a}=0$ to $\mathrm{b}=\infty$ and in w from $\mathrm{c}=\mathrm{w}$ to $\mathrm{d}=\infty$.
(E) Huh?

Convolution (6.6)

- What are the correct values for $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d ?

$$
\begin{aligned}
\int_{0}^{\infty} \int_{w}^{\infty} e^{-s u} g(w) f(u-w) d u & d w \\
& =\int_{a}^{b} \int_{c}^{d} e^{-s u} g(w) f(u-w) d w d u
\end{aligned}
$$

(A) Integrate in u from $\mathrm{a}=0$ to $\mathrm{b}=\infty$ and in w from $\mathrm{c}=\mathrm{u}, \mathrm{d}=\infty$.
(B) Integrate in u from $a=0$ to $\mathrm{b}=\mathrm{w}$ and in w from $\mathrm{c}=0$ to $\mathrm{d}=\infty$.
$\mathcal{W}(\mathrm{C})$ Integrate in u from $\mathrm{a}=0$ to $\mathrm{b}=\infty$ and in w from $\mathrm{c}=0$ to $\mathrm{d}=\mathrm{u}$.
(D) Integrate in u from $\mathrm{a}=0$ to $\mathrm{b}=\infty$ and in w from $\mathrm{c}=\mathrm{w}$ to $\mathrm{d}=\infty$.
(E) Huh?

Convolution (6.6)

- What are the correct values for $\mathrm{a}, \mathrm{b}, \mathrm{c}$ and d ?

$$
\begin{aligned}
\int_{0}^{\infty} \int_{w}^{\infty} e^{-s u} g(w) f(u-w) d u & d w \\
& =\int_{a}^{b} \int_{c}^{d} e^{-s u} g(w) f(u-w) d w d u
\end{aligned}
$$

(A) Integrate in u from $\mathrm{a}=0$ to $\mathrm{b}=\infty$ and in w from $\mathrm{c}=\mathrm{u}, \mathrm{d}=\infty$.
(B) Integrate in u from $a=0$ to $\mathrm{b}=\mathrm{w}$ and in w from $\mathrm{c}=0$ to $\mathrm{d}=\infty$.
$\mathcal{W}(\mathrm{C})$ Integrate in u from $\mathrm{a}=0$ to $\mathrm{b}=\infty$ and in w from $\mathrm{c}=0$ to $\mathrm{d}=\mathrm{u}$.
(D) Integrate in u from $\mathrm{a}=0$ to $\mathrm{b}=\infty$ and in w from $\mathrm{c}=\mathrm{w}$ to $\mathrm{d}=\infty$.
(E) Huh?

Convolution (6.6)

- What are the correct values for a, b, c and d ?

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{w}^{\infty} e^{-s u} g(w) f(u-w) d u d w \\
&=\int_{a}^{b} \int_{c}^{d} e^{-s u} g(w) f(u-w) d w d u
\end{aligned}
$$

(A) Integrate in u from $\mathrm{a}=0$ to $\mathrm{b}=\infty$ and in w from $\mathrm{c}=\mathrm{u}, \mathrm{d}=\infty$.
(B) Integrate in u from $a=0$ to $\mathrm{b}=\mathrm{w}$ and in w from $\mathrm{c}=0$ to $\mathrm{d}=\infty$.
$\mathcal{W}(\mathrm{C})$ Integrate in u from $\mathrm{a}=0$ to $\mathrm{b}=\infty$ and in w from $\mathrm{c}=0$ to $\mathrm{d}=\mathrm{u}$.
(D) Integrate in u from $\mathrm{a}=0$ to $\mathrm{b}=\infty$ and in w from $\mathrm{c}=\mathrm{w}$ to $\mathrm{d}=\infty$.
(E) Huh?

Convolution (6.6)

- What are the correct values for a, b, c and d ?

$$
\begin{aligned}
& \int_{0}^{\infty} \int_{w}^{\infty} e^{-s u} g(w) f(u-w) d u d w \\
&=\int_{a}^{b} \int_{c}^{d} e^{-s u} g(w) f(u-w) d w d u
\end{aligned}
$$

(A) Integrate in u from $\mathrm{a}=0$ to $\mathrm{b}=\infty$ and in w from $\mathrm{c}=\mathrm{u}, \mathrm{d}=\infty$.
(B) Integrate in u from $a=0$ to $\mathrm{b}=\mathrm{w}$ and in w from $\mathrm{c}=0$ to $\mathrm{d}=\infty$.
$\mathcal{W}(\mathrm{C})$ Integrate in u from $\mathrm{a}=0$ to $\mathrm{b}=\infty$ and in w from $\mathrm{c}=0$ to $\mathrm{d}=\mathrm{u}$.
(D) Integrate in u from $\mathrm{a}=0$ to $\mathrm{b}=\infty$ and in w from $\mathrm{c}=\mathrm{w}$ to $\mathrm{d}=\infty$.
(E) Huh?

Convolution (6.6)

$$
\begin{aligned}
F(s) G(s) & =\int_{0}^{\infty} e^{-s \tau} f(\tau) d \tau \int_{0}^{\infty} e^{-s w} g(w) d w \\
& =\int_{a}^{b} \int_{c}^{d} e^{-s u} g(w) f(u-w) d w d u
\end{aligned}
$$

Convolution (6.6)

$$
\begin{aligned}
F(s) G(s) & =\int_{0}^{\infty} e^{-s \tau} f(\tau) d \tau \int_{0}^{\infty} e^{-s w} g(w) d w \\
& =\int_{0}^{\infty} \int_{0}^{u} e^{-s u} g(w) f(u-w) d w d u
\end{aligned}
$$

Convolution (6.6)

$$
\begin{aligned}
& F(s) G(s)=\int_{0}^{\infty} e^{-s \tau} f(\tau) d \tau \int_{0}^{\infty} e^{-s w} g(w) d w \\
&=\int_{0}^{\infty} \int_{0}^{u} e^{-s u} g(w) f(u-w) d w d u \\
&=\int_{0}^{\infty} e^{-s u} \int_{0}^{u} g(w) f(u-w) d w d u \\
&=\int_{0}^{\infty} e^{-s u} h(u) d u=H(s) \\
& \quad \text { where } h(u)=\int_{0}^{u} g(w) f(u-w) d w
\end{aligned}
$$

This is called the convolution of f and g . Denoted $f * g$.

Convolution (6.6)

$$
\begin{aligned}
F(s) G(s) & =\int_{0}^{\infty} e^{-s \tau} f(\tau) d \tau \int_{0}^{\infty} e^{-s w} g(w) d w \\
& =\int_{0}^{\infty} \int_{0}^{u} e^{-s u} g(w) f(u-w) d w d u \\
& =\int_{0}^{\infty} e^{-s u} \int_{0}^{u} g(w) f(u-w) d w d u \\
& =\int_{0}^{\infty} e^{-s u} h(u) d u=H(s)
\end{aligned}
$$

The transform of a convolution is the product of the transforms.
$h(t)=f * g(t)=\int_{0}^{u} g(w) f(t-w) d w$

$$
\Rightarrow H(s)=F(s) G(s)
$$

where $h(u)=\int_{0}^{u} g(w) f(u-w) d w$

This is called the convolution of f and g. Denoted $f * g$.

Convolution (6.6)

- To invert $Y(s)=\frac{1}{s^{2}} \cdot \frac{2}{s^{2}+4}$, we can use the fact that the inverse is the convolution of the inverses of the two pieces (instead of PFD...).

$$
\begin{aligned}
& \mathcal{L}^{-1}\left\{\frac{1}{s^{2}}\right\}= \\
& \mathcal{L}^{-1}\left\{\frac{2}{s^{2}+4}\right\}=
\end{aligned}
$$

Convolution (6.6)

- To invert $Y(s)=\frac{1}{s^{2}} \cdot \frac{2}{s^{2}+4}$, we can use the fact that the inverse is the convolution of the inverses of the two pieces (instead of PFD...).

$$
\begin{aligned}
& \mathcal{L}^{-1}\left\{\frac{1}{s^{2}}\right\}=t \\
& \mathcal{L}^{-1}\left\{\frac{2}{s^{2}+4}\right\}=
\end{aligned}
$$

Convolution (6.6)

- To invert $Y(s)=\frac{1}{s^{2}} \cdot \frac{2}{s^{2}+4}$, we can use the fact that the inverse is the convolution of the inverses of the two pieces (instead of PFD...).

$$
\begin{aligned}
& \mathcal{L}^{-1}\left\{\frac{1}{s^{2}}\right\}=t \\
& \mathcal{L}^{-1}\left\{\frac{2}{s^{2}+4}\right\}=\sin (2 t)
\end{aligned}
$$

Convolution (6.6)

- To invert $Y(s)=\frac{1}{s^{2}} \cdot \frac{2}{s^{2}+4}$, we can use the fact that the inverse is the convolution of the inverses of the two pieces (instead of PFD...).

$$
\begin{aligned}
& \mathcal{L}^{-1}\left\{\frac{1}{s^{2}}\right\}=t \\
& \mathcal{L}^{-1}\left\{\frac{2}{s^{2}+4}\right\}=\sin (2 t)
\end{aligned}
$$

$y(t)=$
(A) $\int_{0}^{t}(t-w) \sin (2 w) d w$
(C) $\int_{0}^{t} w \sin (2(t-w)) d w$
(B) $\int_{0}^{t}(t-w) \sin (2 t) d w$
(D) $\int_{0}^{t} w \sin (2(w-t)) d w$

Convolution (6.6)

- To invert $Y(s)=\frac{1}{s^{2}} \cdot \frac{2}{s^{2}+4}$, we can use the fact that the inverse is the convolution of the inverses of the two pieces (instead of PFD...).

$$
\begin{aligned}
& \mathcal{L}^{-1}\left\{\frac{1}{s^{2}}\right\}=t \\
& \mathcal{L}^{-1}\left\{\frac{2}{s^{2}+4}\right\}=\sin (2 t)
\end{aligned}
$$

$y(t)=$
$\hat{\omega}(\mathrm{A}) \quad \int_{0}^{t}(t-w) \sin (2 w) d w \hat{(C)} \int_{0}^{t} w \sin (2(t-w)) d w$
(B) $\int_{0}^{t}(t-w) \sin (2 t) d w$
(D) $\int_{0}^{t} w \sin (2(w-t)) d w$

Convolution (6.6)

- To invert $Y(s)=\frac{1}{s^{2}} \cdot \frac{2}{s^{2}+4}$, we can use the fact that the inverse is the convolution of the inverses of the two pieces (instead of PFD...).

$$
\begin{aligned}
& \mathcal{L}^{-1}\left\{\frac{1}{s^{2}}\right\}=t \\
& \mathcal{L}^{-1}\left\{\frac{2}{s^{2}+4}\right\}=\sin (2 t)
\end{aligned}
$$

$$
\begin{aligned}
f * g & =g * f \\
\int_{0}^{t} f(t-w) g(w) d w & =\int_{0}^{t} f(t) g(t-w) d w
\end{aligned}
$$

$y(t)=$
$\hat{\omega}(\mathrm{A}) \quad \int_{0}^{t}(t-w) \sin (2 w) d w \hat{(C)} \int_{0}^{t} w \sin (2(t-w)) d w$
(B) $\int_{0}^{t}(t-w) \sin (2 t) d w$
(D) $\int_{0}^{t} w \sin (2(w-t)) d w$

Convolution (6.6)

- Transfer functions

$$
a y^{\prime \prime}+b y^{\prime}+c y=g(t), \quad y(0)=0, y^{\prime}(0)=0
$$

Convolution (6.6)

- Transfer functions

$$
\begin{aligned}
a y^{\prime \prime}+b y^{\prime}+c y & =g(t), \quad y(0)=0, y^{\prime}(0)=0 \\
Y(s) & =\frac{1}{a s^{2}+b s+c} G(s)
\end{aligned}
$$

Convolution (6.6)

- Transfer functions

$$
\begin{aligned}
a y^{\prime \prime}+b y^{\prime}+c y & =g(t), \quad y(0)=0, y^{\prime}(0)=0 \\
Y(s) & =\frac{1}{a s^{2}+b s+c} G(s)
\end{aligned}
$$

- Define the transfer function for the ODE:

Convolution (6.6)

- Transfer functions

$$
\begin{aligned}
a y^{\prime \prime}+b y^{\prime}+c y & =g(t), \quad y(0)=0, y^{\prime}(0)=0 \\
Y(s) & =\frac{1}{a s^{2}+b s+c} G(s)
\end{aligned}
$$

- Define the transfer function for the ODE:

$$
H(s)=\frac{1}{a s^{2}+b s+c}
$$

Convolution (6.6)

- Transfer functions

$$
\begin{aligned}
a y^{\prime \prime}+b y^{\prime}+c y & =g(t), \quad y(0)=0, y^{\prime}(0)=0 \\
Y(s) & =\frac{1}{a s^{2}+b s+c} G(s)
\end{aligned}
$$

- Define the transfer function for the ODE:

$$
H(s)=\frac{1}{a s^{2}+b s+c} \quad \text { Independent of } \mathrm{g}(\mathrm{t})!
$$

Convolution (6.6)

- Transfer functions

$$
\begin{gathered}
a y^{\prime \prime}+b y^{\prime}+c y=g(t), \quad y(0)=0, y^{\prime}(0)=0 \\
Y(s)=\frac{1}{a s^{2}+b s+c} G(s)
\end{gathered}
$$

- Define the transfer function for the ODE:

$$
\begin{aligned}
H(s) & =\frac{1}{a s^{2}+b s+c} \quad \text { Independent of } \mathrm{g}(\mathrm{t})! \\
y(t) & =(h * g)(t)
\end{aligned}
$$

Convolution (6.6)

- Transfer functions

$$
\begin{aligned}
a y^{\prime \prime}+b y^{\prime}+c y & =g(t), \quad y(0)=0, y^{\prime}(0)=0 \\
Y(s) & =\frac{1}{a s^{2}+b s+c} G(s)
\end{aligned}
$$

- Define the transfer function for the ODE:

$$
\begin{aligned}
H(s) & =\frac{1}{a s^{2}+b s+c} \quad \text { Independent of } \mathrm{g}(\mathrm{t})! \\
y(t) & =(h * g)(t)
\end{aligned}
$$

- $h(t)$ is called the impulse response because it solves (1) when $g(t)=\delta(t)$.

Convolution (6.6)

- Transfer functions

$$
\begin{aligned}
a y^{\prime \prime}+b y^{\prime}+c y & =g(t), \quad y(0)=0, y^{\prime}(0)=0 \\
Y(s) & =\frac{1}{a s^{2}+b s+c} G(s)
\end{aligned}
$$

- Define the transfer function for the ODE:

$$
\begin{aligned}
H(s) & =\frac{1}{a s^{2}+b s+c} \quad \text { Independent of } \mathrm{g}(\mathrm{t})! \\
y(t) & =(h * g)(t)
\end{aligned}
$$

- $h(t)$ is called the impulse response because it solves (1) when $g(t)=\delta(t)$.

$$
g(t)=\delta(t)
$$

Convolution (6.6)

- Transfer functions

$$
\begin{aligned}
a y^{\prime \prime}+b y^{\prime}+c y & =g(t), \quad y(0)=0, y^{\prime}(0)=0 \\
Y(s) & =\frac{1}{a s^{2}+b s+c} G(s)
\end{aligned}
$$

- Define the transfer function for the ODE:

$$
\begin{aligned}
H(s) & =\frac{1}{a s^{2}+b s+c} \quad \text { Independent of } \mathrm{g}(\mathrm{t})! \\
y(t) & =(h * g)(t)
\end{aligned}
$$

- $h(t)$ is called the impulse response because it solves (1) when $g(t)=\delta(t)$.

$$
\begin{aligned}
& g(t)=\delta(t) \\
& G(s)=e^{-0 s}=1
\end{aligned}
$$

Convolution (6.6)

- Transfer functions

$$
\begin{aligned}
a y^{\prime \prime}+b y^{\prime}+c y & =g(t), \quad y(0)=0, y^{\prime}(0)=0 \\
Y(s) & =\frac{1}{a s^{2}+b s+c} G(s)
\end{aligned}
$$

- Define the transfer function for the ODE:

$$
\begin{aligned}
H(s) & =\frac{1}{a s^{2}+b s+c} \quad \text { Independent of } \mathrm{g}(\mathrm{t})! \\
y(t) & =(h * g)(t)
\end{aligned}
$$

- $h(t)$ is called the impulse response because it solves (1) when $g(t)=\delta(t)$.

$$
\begin{aligned}
& g(t)=\delta(t) \\
& G(s)=e^{-0 s}=1 \\
& Y(s)=\frac{1}{a s^{2}+b s+c}
\end{aligned}
$$

Convolution (6.6)

- Transfer functions

$$
\begin{aligned}
a y^{\prime \prime}+b y^{\prime}+c y & =g(t), \quad y(0)=0, y^{\prime}(0)=0 \\
Y(s) & =\frac{1}{a s^{2}+b s+c} G(s)
\end{aligned}
$$

- Define the transfer function for the ODE:

$$
\begin{aligned}
H(s) & =\frac{1}{a s^{2}+b s+c} \quad \text { Independent of } \mathrm{g}(\mathrm{t})! \\
y(t) & =(h * g)(t)
\end{aligned}
$$

- $h(t)$ is called the impulse response because it solves (1) when $g(t)=\delta(t)$.

$$
\begin{aligned}
& g(t)=\delta(t) \\
& G(s)=e^{-0 s}=1 \\
& Y(s)=\frac{1}{a s^{2}+b s+c}
\end{aligned} \quad y_{I R}(t)=h(t)=\mathcal{L}^{-1}\left\{\frac{1}{a s^{2}+b s+c}\right\}
$$

Convolution (6.6)

- Transfer functions

$$
\begin{aligned}
a y^{\prime \prime}+b y^{\prime}+c y & =g(t), \quad y(0)=0, y^{\prime}(0)=0 \\
Y(s) & =\frac{1}{a s^{2}+b s+c} G(s)
\end{aligned}
$$

- Define the transfer function for the ODE:

$$
\begin{aligned}
H(s) & =\frac{1}{a s^{2}+b s+c} \quad \text { Independent of } \mathrm{g}(\mathrm{t})! \\
y(t) & =(h * g)(t)
\end{aligned}
$$

- $h(t)$ is called the impulse response beqause it solves (1) when $g(t)=\delta(t)$.

$$
\begin{aligned}
& g(t)=\delta(t) \\
& G(s)=e^{-0 s}=1 \\
& Y(s)=\frac{1}{} \quad y_{I R}(t)=h(t)=\mathcal{L}^{-1}\left\{\frac{1}{a s^{2}+b s+c}\right\}
\end{aligned}
$$

Convolution (6.6)

- Interpreting the transfer function in a model of memory.
- Your contact list got deleted. You are forced to memorize phone numbers. Let $n(t)$ be the number of phone numbers you remember at time t. You forget numbers at a rate k. Finally, $g(t)$ is the number of phone numbers per unit time that you memorize at time t.
- Equation:
- Transform of $n(t)$:
- Impulse response:

Convolution (6.6)

- Interpreting the transfer function in a model of memory.
- Your contact list got deleted. You are forced to memorize phone numbers. Let $n(t)$ be the number of phone numbers you remember at time t. You forget numbers at a rate k. Finally, $g(t)$ is the number of phone numbers per unit time that you memorize at time t.
- Equation:

$$
n^{\prime}=-k n+g(t)
$$

- Transform of $n(t)$:
- Impulse response:

Convolution (6.6)

- Interpreting the transfer function in a model of memory.
- Your contact list got deleted. You are forced to memorize phone numbers. Let $n(t)$ be the number of phone numbers you remember at time t. You forget numbers at a rate k. Finally, $g(t)$ is the number of phone numbers per unit time that you memorize at time t.
- Equation:

$$
n^{\prime}=-k n+g(t)
$$

- Transform of $\mathrm{n}(\mathrm{t}): \quad N(s)=\frac{G(s)}{s+k}$
- Impulse response:

Convolution (6.6)

- Interpreting the transfer function in a model of memory.
- Your contact list got deleted. You are forced to memorize phone numbers. Let $n(t)$ be the number of phone numbers you remember at time t. You forget numbers at a rate k. Finally, $g(t)$ is the number of phone numbers per unit time that you memorize at time t.
- Equation:

$$
n^{\prime}=-k n+g(t)
$$

- Transform of $\mathrm{n}(\mathrm{t}): \quad N(s)=\frac{G(s)}{s+k}$
- Impulse response:

$$
H(s)=\frac{1}{s+k}
$$

Convolution (6.6)

- Interpreting the transfer function in a model of memory.
- Your contact list got deleted. You are forced to memorize phone numbers. Let $n(t)$ be the number of phone numbers you remember at time t. You forget numbers at a rate k. Finally, $g(t)$ is the number of phone numbers per unit time that you memorize at time t.
- Equation:

$$
n^{\prime}=-k n+g(t)
$$

- Transform of $\mathrm{n}(\mathrm{t}): \quad N(s)=\frac{G(s)}{s+k}$
- Impulse response:

$$
\begin{aligned}
& H(s)=\frac{1}{s+k} \\
& h(t)=e^{-k t}
\end{aligned}
$$

Convolution (6.6)

- Interpreting the transfer function in a model of memory.
- Your contact list got deleted. You are forced to memorize phone numbers. Let $n(t)$ be the number of phone numbers you remember at time t. You forget numbers at a rate k. Finally, $g(t)$ is the number of phone numbers per unit time that you memorize at time t.
- Equation:

$$
n^{\prime}=-k n+g(t)
$$

- Transform of $\mathrm{n}(\mathrm{t}): \quad N(s)=\frac{G(s)}{s+k}$
- Impulse response:

$$
H(s)=\frac{1}{s+k}
$$

$$
h(t)=e^{-k t}
$$

$$
n(t)=\int_{0}^{t} h(t-w) g(w) d w
$$

Convolution (6.6)

- Interpreting the transfer function in a model of memory.
- Your contact list got deleted. You are forced to memorize phone numbers. Let $n(t)$ be the number of phone numbers you remember at time t. You forget numbers at a rate k . Finally, $\mathrm{g}(\mathrm{t})$ is the number of phone numbers per unit time that you memorize at time t.
- Equation:

$$
n^{\prime}=-k n+g(t)
$$

- Transform of $\mathrm{n}(\mathrm{t}): \quad N(s)=\frac{G(s)}{s+k}$
- Impulse response:

$$
H(s)=\frac{1}{s+k}
$$

$$
h(t)=e^{-k t}
$$

$$
n(t)=\int_{0}^{t} h(t-w) g(w) d w=\int_{0}^{t} e^{-k(t-w)} g(w) d w
$$

Convolution (6.6)

- Interpreting the transfer function in a model of memory.
- Your contact list got deleted. You are forced to memorize phone numbers. Let $n(t)$ be the number of phone numbers you remember at time t. You forget numbers at a rate k . Finally, $\mathrm{g}(\mathrm{t})$ is the number of phone numbers per unit time that you memorize at time t.
- Equation:

$$
n^{\prime}=-k n+g(t)
$$

Convolution (6.6)

- Interpreting the transfer function in a model of memory.
- Your contact list got deleted. You are forced to memorize phone numbers. Let $n(t)$ be the number of phone numbers you remember at time t. You forget numbers at a rate k. Finally, $g(t)$ is the number of phone numbers per unit time that you memorize at time t.
- Equation:

$$
n^{\prime}=-k n+g(t)
$$

- If you memorize one phone number at $\mathrm{t}=0(\mathrm{~g}(\mathrm{t})=\delta(\mathrm{t}) \mathrm{)}$, $\mathrm{h}(\mathrm{t})$ tells you what's left of that memory at time t.

$$
h(t)=e^{-k t}
$$

Convolution (6.6)

- Interpreting the transfer function in a model of memory.
- Your contact list got deleted. You are forced to memorize phone numbers. Let $n(t)$ be the number of phone numbers you remember at time t. You forget numbers at a rate k. Finally, $g(t)$ is the number of phone numbers per unit time that you memorize at time t.
- Equation:

$$
n^{\prime}=-k n+g(t)
$$

- If you memorize one phone number at $\mathrm{t}=0(\mathrm{~g}(\mathrm{t})=\delta(\mathrm{t}) \mathrm{)}$, $\mathrm{h}(\mathrm{t})$ tells you what's left of that memory at time t.

$$
h(t)=e^{-k t}
$$

- If you memorize numbers over time (some complicated $g(t)$),

$$
\begin{aligned}
n(t) & =\int_{0}^{t} h(t-w) g(w) d w \\
& =\int_{0}^{t} e^{-(t-w)} g(w) d w
\end{aligned}
$$

Convolution (6.6)

- Interpreting the transfer function in a model of memory.
- Your contact list got deleted. You are forced to memorize phone numbers. Let $n(t)$ be the number of phone numbers you remember at time t. You forget numbers at a rate k . Finally, $\mathrm{g}(\mathrm{t})$ is the number of phone numbers per unit time that you memorize at time t.
- Equation:

$$
n^{\prime}=-k n+g(t)
$$

- If you memorize one phone number at $\mathrm{t}=0(\mathrm{~g}(\mathrm{t})=\delta(\mathrm{t}) \mathrm{)}$, $\mathrm{h}(\mathrm{t})$ tells you what's left of that memory at time t.

$$
h(t)=e^{-k t}
$$

- If you memorize numbers over time (some complicated $g(t)$),

$$
\begin{aligned}
n(t) & =\int_{0}^{t} h(t-w) g(w) d w \\
& =\int_{0}^{t} e^{-(t-w)} g(w) d w
\end{aligned}
$$

Convolution (6.6)

- Interpreting the transfer function in a model of memory.
- Your contact list got deleted. You are forced to memorize phone numbers. Let $n(t)$ be the number of phone numbers you remember at time t. You forget numbers at a rate k . Finally, $\mathrm{g}(\mathrm{t})$ is the number of phone numbers per unit time that you memorize at time t.
- Equation:

$$
n^{\prime}=-k n+g(t)
$$

- If you memorize one phone number at $\mathrm{t}=0(\mathrm{~g}(\mathrm{t})=\delta(\mathrm{t}) \mathrm{)}$, $\mathrm{h}(\mathrm{t})$ tells you what's left of that memory at time t.

$$
h(t)=e^{-k t}
$$

- If you memorize numbers over time (some complicated $g(t)$),

$$
\begin{aligned}
n(t) & =\int_{0}^{t} h(t-w) g(w) d w \\
& =\int_{0}^{t} e^{-(t-w)} g(w) d w
\end{aligned}
$$

Convolution (6.6)

- Interpreting the transfer function in a model of memory.
- Your contact list got deleted. You are forced to memorize phone numbers. Let $n(t)$ be the number of phone numbers you remember at time t. You forget numbers at a rate k . Finally, $\mathrm{g}(\mathrm{t})$ is the number of phone numbers per unit time that you memorize at time t.
- Equation:

$$
n^{\prime}=-k n+g(t)
$$

- If you memorize one phone number at $\mathrm{t}=0(\mathrm{~g}(\mathrm{t})=\delta(\mathrm{t}) \mathrm{)}$, $\mathrm{h}(\mathrm{t})$ tells you what's left of that memory at time t.

$$
h(t)=e^{-k t}
$$

- If you memorize numbers over time (some complicated $g(t)$),

$$
\begin{aligned}
n(t) & =\int_{0}^{t} h(t-w) g(w) d w \\
& =\int_{0}^{t} e^{-(t-w)} g(w) d w
\end{aligned}
$$

Fourier series

- Recall Method of Undetermined Coefficients for equations of the form

$$
a y^{\prime \prime}+b y^{\prime}+c y=f(t)
$$

Fourier series

- Recall Method of Undetermined Coefficients for equations of the form

$$
a y^{\prime \prime}+b y^{\prime}+c y=f(t)
$$

- Applicable for functions $f(t)$ that are polynomials, exponentials, sin, cos and products of those.

Fourier series

- Recall Method of Undetermined Coefficients for equations of the form

$$
a y^{\prime \prime}+b y^{\prime}+c y=f(t)
$$

- Applicable for functions $f(t)$ that are polynomials, exponentials, sin, cos and products of those.
- How about functions like this (period but not trig)?

Fourier series

- Recall Method of Undetermined Coefficients for equations of the form

$$
a y^{\prime \prime}+b y^{\prime}+c y=f(t)
$$

- Applicable for functions $f(t)$ that are polynomials, exponentials, sin, cos and products of those.
- How about functions like this (period but not trig)?

- What if we could construct such functions using only sine and cosine functions?

