
Today

• Modeling with delta-function forcing (tanks, springs)

• Convolution

• Transfer functions



Delta-function forcing (6.5)

• Water with cin = 2 g/L of sugar enters a tank at a rate of r = 1 L/min. The 
initially sugar-free tank holds V = 5 L and the contents are well-mixed. 
Water drains from the tank at a rate r. At tcube = 3 min, a sugar cube of 
mass mcube = 3 g is dropped into the tank. 
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https://www.desmos.com/calculator/eizjtgf3jc
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Delta-function forcing (6.5)

Y (s) =
2(e−5s + s + 2)
s2 + 2s + 10

=
2e−5s

s2 + 2s + 10
+ 2

s + 2
s2 + 2s + 10

=
2e−5s

s2 + 2s + 10
+ 2

s + 2
(s + 1)2 + 9

=
2e−5s

s2 + 2s + 10
+ 2

s + 1
(s + 1)2 + 9

+
2

(s + 1)2 + 9

=
2e−5s

s2 + 2s + 10
+ 2

s + 1
(s + 1)2 + 9

+
2
3

3
(s + 1)2 + 9

=
2
3

3e−5s

(s + 1)2 + 9
+ 2

s + 1
(s + 1)2 + 9

+
2
3

3
(s + 1)2 + 9

• Inverting Y(s)...   (go through this on your own)

y(t) =
2
3
u5(t)e−(t−5) sin(3(t− 5)) + 2e−t cos(3t) +

2
3
e−t sin(3t)

homogeneous partparticular solution from δ forcing
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F (s)G(s) =
� ∞

0
e−sτf(τ) dτ

� ∞

0
e−swg(w) dw

=
� ∞

0
e−swg(w)

� ∞

0
e−sτf(τ) dτ dw

=
� ∞

0
g(w)

� ∞

0
e−s(τ+w)f(τ) dτ dw

=
� ∞

0
g(w)

� ∞

w
e−s(u)f(u− w) du dw

Replace    using                    where      is constant in the inner integral.τ u = τ + w

=
� ∞

0

� ∞

w
e−sug(w)f(u− w) du dw

=
� b

a

� d

c
e−sug(w)f(u− w) dw du

w
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Fourier series

• Recall Method of Undetermined Coefficients for equations of the form

• Applicable for functions f(t) that are polynomials, exponentials, sin, cos and 
products of those.

• How about functions like this (period but not trig)?

ay�� + by� + cy = f(t)

• What if we could 
construct such 
functions using only 
sine and cosine 
functions?


