Today

- Diffusion equation -
- derivation (transport eqns in general)
- initial conditions, boundary conditions
- steady state
- separation of variables

Conservation equations

$\mathrm{c}(\mathrm{x}, \mathrm{t})$ is linear mass density of ink in a long narrow tube.

$$
\begin{aligned}
Q_{a b}(t) & =\int_{a}^{b} c(x, t) d x \\
\frac{d Q_{a b}}{d t}(t) & =\frac{d}{d t} \int_{a}^{b} c(x, t) d x=\int_{a}^{b} \frac{\partial}{\partial t} c(x, t) d x
\end{aligned}
$$

Define the flux J_{a} to be the amount of mass crossing the line $x=a$ per unit of time (particles moving right count as positive flux).

In that case, the change of Q inside the a-b box can also be counted watching flux, that is, flux at a - flux at b :

$$
\frac{d Q_{a b}}{d t}(t)=-J_{b}+J_{a}
$$

Conservation equations - Transport equation

$$
\begin{aligned}
Q_{a b}(t) & =\int_{a}^{b} c(x, t) d x \\
\frac{d Q_{a b}}{d t}(t) & =\frac{d}{d t} \int_{a}^{b} c(x, t) d x=\int_{a}^{b} \frac{\partial}{\partial t} c(x, t) d x \\
\frac{d Q_{a b}}{d t}(t) & =-J_{b}+J_{a}
\end{aligned}
$$

Need a model for flux. Let's consider simpler case first (not diffusion yet!)
If fluid in pipe is moving with velocity v , flux is vc: $J_{a}=v c(a, t)$

$$
\begin{gathered}
\frac{d Q_{a b}}{d t}(t)=-J_{b}+J_{a}=-v c(b, t)+v c(a, t)=-\left.v c(x, t)\right|_{a} ^{b}=-\int_{a}^{b} v \frac{\partial c}{\partial x} d x \\
\int_{a}^{b} \frac{\partial}{\partial t} c(x, t) d x=-\int_{a}^{b} v \frac{\partial c}{\partial x} d x \Rightarrow \frac{\partial c}{\partial t}=-v \frac{\partial c}{\partial x} \quad \begin{array}{l}
\text { Called Transport } \\
\text { equation. }
\end{array}
\end{gathered}
$$

Conservation equations - Diffusion equation

$$
Q_{a b}(t)=\int_{a}^{b} c(x, t) d x
$$

$$
\frac{d Q_{a b}}{d t}(t)=\frac{d}{d t} \int_{a}^{b} c(x, t) d x=\int^{b} \frac{\partial}{c} c(x, t) d x
$$

Initial and boundary conditions

- One derivative in time requires an initial condition in t.
- Two derivatives in space require two "initial conditions" in x (i.e. one at $\mathrm{x}=0$ and one at $\mathrm{x}=\mathrm{L}$). Called boundary conditions (BCs).
- Initial condition: $c(x, 0)=f(x)$ where $f(x)$ gives initial concentration profile.
- Boundary conditions:
- $\mathrm{c}(0, \mathrm{t})=\mathrm{c}_{0}$ and $\mathrm{c}(\mathrm{L}, \mathrm{t})=\mathrm{c} \mathrm{L}$
$\cdot \frac{d c}{d x}(0, t)=m_{0}$ and $\frac{d c}{d x}(L, t)=m_{L} \quad \begin{gathered}\text { Neumann conditions } \\ \text { (no-flux conditions) }\end{gathered}$
- $\mathrm{c}(0, \mathrm{t})=\mathrm{c}_{0}$ and $\frac{d c}{d x}(L, t)=m_{L}$

Dirichlet conditions

Mixed conditions Neumann conditions also called flixebioneptiohitio (nisflux when $m_{0}=m_{L}=0$)

The Diffusion equation

The Diffusion Equation
 $$
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}
$$

-What does a steady state of the Diffusion equation look like?

$$
\begin{gathered}
0=D \frac{d^{2} c}{d x^{2}} \\
c_{s s}(x)=A x+B
\end{gathered}
$$

- A and B can be determined using the BCs. Getting A from Neumann conditions requires using the IC as well (total mass conservation).

Separation of variables

- Doc cam

Deriving the FS coefficient formulae
Define the dot product for periodic functions (with period P)

$$
f(x) \circ g(x)=\int_{\substack{\text { ore cod } \\ p \in \text { prod }}} f(x) \cdot g(x) d x=\int_{-P / 2}^{p / 2} f(x) g(x) d x
$$

Let $V_{n}(x)=\cos \left(\frac{2 \pi n x}{p}\right), \omega_{n}(x)=\sin \left(\frac{2 \pi n x}{p}\right), V_{0}(x)=1 . \quad(n=1,2, \cdots)$

This pdf is also posted on the lecture slides page.

Recall (or calculate for yourself) that

$$
\begin{aligned}
& V_{0}(x) \cdot V_{0}(x)=P, V_{m}(x) \circ V_{n}(x)=0 \text { for } m \neq n, V_{n}(x) \circ V_{n}(x)=P / 2 \\
& W_{m}(x) \circ V_{n}(x)=0, W_{m}(x) \circ W_{n}(x)=0 \text { for } m \neq n, W_{n}(x) \circ W_{n}(x)=P / 2
\end{aligned}
$$

suppose $f(x)$ can be represented exactly as a FS. Thus

$$
f(x)=A_{0} v_{0}(x)+\sum_{m=1}^{\infty} a_{m} v_{m}(x)+\sum_{m=1}^{\infty} b_{m} V_{m}(x)
$$

Find its FS coefficients. As with vectors, use "o "to find A_{0}, a_{n}, b_{n}.
To find A_{0},

$$
f(x) \circ V_{0}(x)=A_{0} V_{0}(x) \cdot V_{0}(x)+\sum_{m=1}^{\infty} a_{m} V_{m}(x) \circ V_{0}(x)+\sum_{m=1}^{\infty} b_{m} W_{m}(x) \circ V_{0}(x)=A_{0} \cdot P
$$

Thus, $A_{0}=\frac{1}{p} f(x) \circ V_{0}(x)=\frac{1}{p} \int_{-p / 2}^{p / 2} f(x) d x$.
To find a_{n},

$$
\left\lvert\, \begin{aligned}
& f(x) \circ V_{n}(x)=A_{0} v_{0}(x) \cdot V_{n}(x)+\sum_{m=1}^{\infty} a_{m} V_{m}(x) \circ V_{n}(x)+\sum_{m=1}^{\infty} b_{m} w_{m}(x) \cdot V_{n}(x)=a_{n} V_{n}(x) \cdot V_{n}(x) \\
& r^{p / 2}
\end{aligned}\right.
$$

Thus, $a_{n}=\frac{2}{p} f(x) \circ v_{n}^{m}(x)=\frac{2}{p} \int_{-p / 2}^{p / 2} f(x) \cos \frac{2 n \pi x}{p} d x$.
Similarly, $b_{n}=\frac{2}{P} \int_{-\frac{P}{2}}^{p / 2} f(x) \sin \frac{2 n \pi x}{P} d x$
In many cases, we will have $P=2 L$ (but not alwaysl) So

$$
\begin{aligned}
& A_{0}=\frac{1}{2 L} \int_{-L}^{L} f(x) d x \\
& a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x \\
& b_{n}=\frac{1}{L} \int_{-1}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
\end{aligned}
$$

Fourier series

- Find the Fourier series for $\mathrm{f}(\mathrm{x})=2 \mathrm{u}_{0}(\mathrm{x})-1$ on the interval $[-1,1]$.

$$
\begin{aligned}
f_{F S}(x)= & a_{0} \\
& +a_{1} \cos \left(\frac{\pi x}{L}\right)+a_{2} \cos \left(\frac{2 \pi x}{L}\right)+\cdots \\
& +b_{1} \sin \left(\frac{\pi x}{L}\right)+b_{2} \sin \left(\frac{2 \pi x}{L}\right)+\cdots
\end{aligned}
$$

- Our hope is that $f(x)=f_{F S}(x)$ so we calculate coefficients as if they were equal:

$$
\begin{aligned}
A_{0} & =\frac{1}{2 L} \int_{-L}^{L} f(x) d x & \begin{array}{l}
\mathrm{A}_{0} \text { is the average } \\
\text { value of } \mathrm{f}(\mathrm{x})!
\end{array} &
\end{aligned}
$$

Fourier series

$$
\begin{aligned}
& \text { - Calculate the coefficients. } \\
& f_{F S}(x)=\frac{a_{0}}{2}+a_{1} \cos \left(\frac{\pi x}{L}\right)+a_{2} \cos \left(\frac{2 \pi x}{L}\right)+\cdots \\
& +b_{1} \sin \left(\frac{\pi x}{L}\right)+b_{2} \sin \left(\frac{2 \pi x}{L}\right)+\cdots \\
& \mathrm{a}_{0}=0 \\
& a_{n}=0 \\
& b_{n}=2\left(1-(-1)^{n}\right) / n \pi \\
& f_{F S}(x)=\frac{4}{\pi} \sin \left(\frac{\pi x}{L}\right)+\frac{4}{3 \pi} \sin \left(\frac{3 \pi x}{L}\right)+\frac{4}{5 \pi} \sin \left(\frac{5 \pi x}{L}\right) \\
& a_{0}=\frac{1}{L} \int_{-L}^{L} f(x) d x \\
& a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x \\
& b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
\end{aligned}
$$

Fourier series

- Theorem Suppose f and f^{\prime} are piecewise continuous on [-L,L] and periodic beyond that interval. Then $f(x)=f_{F S}(x)$ at all points at which f is continuous. Furthermore, at points of discontinuity, $\mathrm{fFs}^{(\mathrm{x}} \mathrm{x}$ takes the value of the midpoint of the jump. That is,

$$
f_{F S}(x)=\frac{f\left(x^{+}\right)+f\left(x^{-}\right)}{2}
$$

Heat/Diffusion equation - example

- Find the solution to the heat/diffusion equation

$$
u_{t}=7 u_{x x}
$$

- subject to BCs

$$
u(0, t)=0=u(4, t)
$$

- and with IC

$$
u(x, 0)= \begin{cases}1, & 0 \leq x \leq 2 \\ 0, & 2<x \leq 4\end{cases}
$$

- The "warming up the milk bottle" example.

Using Fourier Series to solve the Diffusion Equation

$$
\begin{aligned}
& u_{t}=4 u_{x x} \\
& u(0, t)=u(2, t)=0 \\
& u(x, 0)=x
\end{aligned}
$$

(A) $u(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} e^{-n^{2} \pi^{2} t} \cos \frac{n \pi x}{2} \quad a_{0}=1, a_{n}=-\frac{8}{n^{2} \pi^{2}}$ for n even
$\hat{\sim}(\mathrm{B}) u(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-n^{2} \pi^{2} t} \sin \frac{n \pi x}{2}$

$$
b_{n}=\frac{(-1)^{n+1} 4}{n \pi}
$$

- Show Desmos movies.
https://www.desmos.com/calculator/yt7kztckeu
https://www.desmos.com/calculator/wcdvgrveez

Using Fourier Series to solve the Diffusion Equation

$$
\begin{aligned}
& u_{t}=4 u_{x x} \\
& \left.\frac{d u}{d x}\right|_{x=0,2}=0 \\
& u(x, 0)=\cos \frac{3 \pi x}{2}
\end{aligned}
$$

The IC is an eigenvector! Note that it satisfies the BCs.

$$
\begin{gathered}
v_{3}(x)=\cos \frac{3 \pi x}{2} \\
v_{n}(x)=\cos \frac{n \pi x}{2} \\
u_{n}(x, t)=e^{\lambda_{n} t} \cos \frac{n \pi x}{2} \\
\frac{\partial}{\partial t} u_{n}(x, t)=\lambda_{n} e^{\lambda_{n} t} \cos \frac{n \pi x}{2} \\
4 \frac{\partial^{2}}{\partial x^{2}} u_{n}(x, t)=-\frac{4 n^{2} \pi^{2}}{4} e^{\lambda_{n} t} \cos \frac{n \pi x}{2}
\end{gathered}
$$

So the solution is

$$
u(x, t)=e^{-9 \pi^{2} t} \cos \frac{3 \pi x}{2}
$$

