
Today

• Diffusion equation - 


• derivation (transport eqns in general)


• initial conditions, boundary conditions


• steady state


• separation of variables



Conservation equations

Qab(t) =
Z b

a
c(x, t) dx

a b

c(x,t) is linear mass density of ink in a long narrow tube.
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Define the flux Ja to be the amount of mass crossing the line x=a per unit of 
time (particles moving right count as positive flux) .


In that case, the change of Q inside the a-b box can also be counted 
watching flux, that is, flux at a - flux at b:

dQab

dt
(t) = �Jb + Ja

JbJa



Conservation equations - Transport equation
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Need a model for flux. Let’s consider simpler case first (not diffusion yet!)


If fluid in pipe is moving with velocity v, flux is vc:
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Called Transport 
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Conservation equations - Diffusion equation

Qab(t) =
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Now lets consider diffusion. We can derive this from chemical potential but


it also makes sense that for diffusion:
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The Diffusion Equation
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Initial and boundary conditions

• One derivative in time requires an initial condition in t.


• Two derivatives in space require two “initial conditions” in x (i.e. one at 
x=0 and one at x=L). Called boundary conditions (BCs).


• Initial condition: c(x,0) = f(x) where f(x) gives initial concentration profile.


• Boundary conditions: 


• c(0,t) = c0 and c(L,t) = cL


•                           and


• c(0,t) = c0 and 


dc

dx

(0, t) = m0
dc

dx

(L, t) = mL

Dirichlet conditions

Neumann conditions

Ja = �D

dc

dx

(a, t)Recall flux:
Neumann conditions also 
called flux conditions (no-
flux when m0 = mL = 0)

Mixed conditionsdc

dx

(L, t) = mL

a

dc
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(0, t) + bc(0, t) = m0 Robin conditions

(no-flux conditions)



The Diffusion equation

• What does a steady state of the Diffusion equation look like?


• A and B can be determined using the BCs. Getting A from Neumann 
conditions requires using the IC as well (total mass conservation).

The Diffusion Equation
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dt
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css(x) = Ax + B



Separation of variables

• Doc cam



This pdf is 
also posted 
on the lecture 
slides page.



• Find the Fourier series for f(x) = 2u0(x)-1 on the interval [-1,1].

• Our hope is that f(x) = fFS(x) so we calculate 
coefficients as if they were equal:
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• To simplify formulas, usually 
define 
a0 = 2A0 =
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A0 is the average 
value of f(x)!

Fourier series



• Calculate the coefficients.

https://www.desmos.com/calculator/tlvtikmi0y Does f(x) = fFS(x) for all x?
Problems at jumps! x=-1, 0, 1

Fourier series
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Fourier series

• Theorem  Suppose f and f’ are piecewise continuous on [-L,L] and 
periodic beyond that interval. Then f(x) = fFS(x) at all points at which f 
is continuous. Furthermore, at points of discontinuity, fFS(x) takes the 
value of the midpoint of the jump. That is,

fFS(x) =
f(x+) + f(x�)
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Heat/Diffusion equation - example

• Find the solution to the heat/diffusion equation 


• subject to BCs


• and with IC


• The “warming up the milk bottle” example. 

u
t

= 7u
xx

u(0, t) = 0 = u(4, t)

u(x, 0) =

⇢
1, 0  x  2
0, 2 < x  4

https://www.desmos.com/calculator/zvowjmu30g



Using Fourier Series to solve the Diffusion Equation

u(0, t) = u(2, t) = 0

u(x, 0) = x

u
t

= 4u
xx
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(0 for n odd)

a0 = 1, an = � 8

n2�2
for n even

(A)

(B)

• Show Desmos movies.
https://www.desmos.com/calculator/yt7kztckeu
https://www.desmos.com/calculator/wcdvgrveez

https://www.desmos.com/calculator/yt7kztckeu
https://www.desmos.com/calculator/wcdvgrveez


Using Fourier Series to solve the Diffusion Equation
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The IC is an eigenvector! Note that it satisfies the BCs.
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So the solution is


