
Today

• Reminders:

• WeBWorK assignment 1 due Thursday 1 pm.

• Quiz 2 on Monday in tutorial sections.

• If you have questions, post them on Piazza (don’t email me) and/or 
come to office hours.

• Modeling (Section 2.3)

• Existence and uniqueness (Section 2.4 - not going test on the theory)

• Second order linear equations - constant coefficients, Wronskian (3.1, 3.2)



Office hours

• Eric - MATX 1219 (might change to MATX 1215 during the term)

• Tues 11 am -12:30 pm

•  Wed 1 pm - 2 pm

• Ye - location TBA in tutorial

• Fri 1 pm - 2 pm

• Mengdi - location TBA in tutorial

• Mon 1 pm - 2 pm
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Modeling (Section 2.3)

• Inflow/outflow problems

• Determine what quantity(-ies) to track (e.g. mass, concentration, 
temperature, etc.).

• Choose a small interval of time,      , and add up all the changes.

• Note that                               change during intervening      .

• Take limit as               to get an equation for q(t).

∆t

∆t→ 0

∆tq(t + ∆t) = q(t)+



Modeling (Section 2.3)  - Example

• Freshwater flows into a tank at a rate 2 L/min. The tank starts with a 
concentration of 100 g / L of salt in it and holds 10 L. The tank is well mixed 
and the mixed water drains out at the same rate as the inflow. 

(a) Write down an IVP for the mass of salt in the tank as a function of 
time.

(b) What is the limiting mass of salt in the tank (                   )? lim
t→∞

m(t)
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• Freshwater flows into a tank at a rate 2 L/min. The tank starts with a 
concentration of 100 g / L of salt in it and holds 10 L. The tank is well mixed 
and the mixed water drains out at the same rate as the inflow. 

(a) Write down an IVP for the mass of salt in the tank as a function of 
time.
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(a) What is the initial condition?

• m(0) = 100 g / L.

lim
t→∞
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To think about: what is the 
most general equation 

that can be solved using 
(A) and (B)?

• What method could you use to solve the ODE                              ?

(A) Integrating factors.
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m(t) = 100et/5

m(t) = 1000et/5

m(t) = 1000e−t/5

• Freshwater flows into a tank at a rate 2 L/min. The tank starts with a 
concentration of 100 g / L of salt in it and holds 10 L. The tank is well mixed 
and the mixed water drains out at the same rate as the inflow. 
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• The solution to the IVP is 

m(t) = 100e−t/5

(A) 

(B) 

(C) 

(D) 

(E)
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t→∞
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lim
t→∞
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Modeling (Section 2.3)  - Example

• Saltwater with a concentration of 200 g/L flows into a tank at a rate 2 L/min. 
The tank starts with no salt in it and holds 10 L. The tank is well mixed and 
the mixed water drains out at the same rate as the inflow. 

(a) Write down an IVP for the mass of salt in the tank as a function of 
time.

(b) What is the limiting mass of salt in the tank?

(b) Directly from the equation (m’ = 400 - m/5), find an m for which m’=0.

• m=2000. Called steady state - a constant solution.

• What happens when m < 2000?  ---> m’ > 0.

• What happens when m > 2000?  ---> m’ < 0.

• Limiting mass: 2000 g      (Long way: solve the eq. and let t→∞.)
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Theorem 2.4.2  Let the functions    and        be continuous in some 

rectangle                                           containing the point             . 

Then, in some interval                                      contained in                 , 

there is a unique solution                 of the IVP   

f
∂f

∂y

α < t < βt0 − h < t0 < t0 + h

y = φ(t)

y� = f(t, y), y(t0) = y0.

α < t < β, γ < y < δ (t0, y0)
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• Example: 
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dt
= y2, y(0) = 1



Existence and uniqueness (Section 2.4)

Theorem 2.4.2  Let the functions    and        be continuous in some 

rectangle                                           containing the point             . 

Then, in some interval                                      contained in                 , 

there is a unique solution                 of the IVP   

f
∂f

∂y

α < t < βt0 − h < t0 < t0 + h

y = φ(t)

y� = f(t, y), y(t0) = y0.

α < t < β, γ < y < δ (t0, y0)

• A couple questions/examples to explore on your own:

• Why don’t we get a solution all the way to the ends of the t interval?  

• Example: 

• How does a non-continuous RHS lead to more than one solution?

• Example: dy

dt
=
√

y, y(0) = 0

dy

dt
= y2, y(0) = 1
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Second order linear equations (Chapter 3) 

• The general form for a second order linear equation:

• Now, an IVP requires two ICs: 

• As with first order linear equations, we have homogeneous (g=0) and non-
homogeneous second order linear equations.

• We’ll start by considering the homogeneous case with constant coefficients:

y�� + p(t)y� + q(t)y = g(t)

y(0) = y0, y�(0) = v0

ay�� + by� + cy = 0
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Homog. eq. with constant coeff.  (Section 3.1) 

• Suppose you already found a couple solutions, y1(t) and y2(t). This means that 

• Notice that y(t) = C1y1(t) is also a solution. Plug it in and check:

ay�� + by� + cy = 0
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• Which of the following functions are also solutions?

(A) y(t) = y1(t)2

(B) y(t) = y1(t)+y2(t)

(C) y(t) = y1(t) y2(t)

(D) y(t) = y1(t) / y2(t)

• In fact, the following are all solutions:   C1y1(t),   C2y2(t),   C1y1(t)+C2y2(t).

• With first order equations, the arbitrary constant appeared through an 
integration step in our methods. With second order equations, not so lucky.

• Instead, find two independent solutions, y1(t), y2(t), by whatever method.

• The general solution will be  y(t) = C1y1(t) + C2y2(t).
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