Today

- Summary of 2x2 systems
- Non-homogeneous two-tank example
- Intro to Laplace transforms

Summary - homogeneous 2x2 systems

Summary - homogeneous 2x2 systems

Repeated evalue cases:

 $< \lambda < 0$, two indep. evectors.

 λ >0, two indep. evectors.

 λ <0, only one evector.

One zero evalue (singular matrix):

 $\lambda_1=0, \lambda_2<0,$

- Salt water flows into a tank holding 10 L of water at a rate of 1 L/min with a concentration of 200 g/L. The well-mixed solution flows from that tank into a tank holding 5 L through a pipe at 3 L/min. Another pipe takes the solution in the second tank back into the first at a rate of 2 L/ min. Finally, solution drains out of the second tank at a rate of 1 L/min.
- Write down a system of equations in matrix form for the mass of salt in each tank.

$$\binom{m_1}{m_2}' = \begin{pmatrix} -\frac{3}{10} & \frac{2}{5} \\ \frac{3}{10} & -\frac{3}{5} \end{pmatrix} \binom{m_1}{m_2} + \binom{200}{0}$$

- Salt water flows into a tank holding 10 L of water at a rate of 1 L/min with a concentration of 200 g/L. The well-mixed solution flows from that tank into a tank holding 5 L through a pipe at 3 L/min. Another pipe takes the solution in the second tank back into the first at a rate of 2 L/ min. Finally, solution drains out of the second tank at a rate of 1 L/min.
- Find the eigenvalues and the long term (steady state) solution.

$$\begin{pmatrix} m_1 \\ m_2 \end{pmatrix}' = \begin{pmatrix} -\frac{3}{10} & \frac{2}{5} \\ \frac{3}{10} & -\frac{3}{5} \end{pmatrix} \begin{pmatrix} m_1 \\ m_2 \end{pmatrix} + \begin{pmatrix} 200 \\ 0 \end{pmatrix}$$
$$\operatorname{tr} A = -\frac{9}{10} \qquad (\operatorname{tr} A)^2 = \frac{81}{100}$$
$$\operatorname{det} A = \frac{9}{50} - \frac{6}{50} = \frac{3}{50} \qquad 4 \operatorname{det} A = \frac{12}{50}$$
Both evalues negative!

- A "Method of undetermined coefficients" similar to what we saw for second order equations can be used for systems.
- For this course, I'll only test you on constant nonhomogeneous terms (like the previous example).

Laplace transforms - intro (6.1)

- Motivation for Laplace transforms:
 - \bullet We know how to solve $ay^{\prime\prime}+by^{\prime}+cy=g(t)\,$ when g(t) is polynomial, exponential, trig.
 - In applications, g(t) is often "piece-wise continuous" meaning that it consists of a finite number of pieces with jump discontinuities in between. For example,

$$g(t) = \begin{cases} \sin(\omega t) & 0 < t < 10, \\ 0 & t \ge 10. \end{cases}$$

 These can be handled by previous techniques (modified) but it isn't pretty (solve from t=0 to t=10, use y(10) as the IC for a new problem starting at t=10).

Laplace transforms - intro (6.1)

- Motivation for Laplace transforms example RLC circuit
 - Resistor, inductor and capacitor in series

$$I''(t) + \frac{R}{L}I'(t) + \frac{1}{LC}I(t) = v(t)$$

• If v(t) comes from radio waves then $v(t) = A\cos(\omega t)$ and the circuit is called a radio receiver.

Laplace transforms - intro (6.1)

- Instead of not-so-pretty techniques, we use Laplace transforms.
- Idea:

• Laplace transform of y(t): $\mathcal{L}\{y(t)\} = Y(s) = \int_0^\infty e^{-st} y(t) \ dt$

Laplace transforms - examples (6.1)

• What is the Laplace transform of y(t) = 3 ?

$$\mathcal{L}\{y(t)\} = Y(s) = \int_0^\infty e^{-st} 3 \, dt$$
$$= -\frac{3}{s} e^{-st} \Big|_0^\infty$$
$$= \lim_{A \to \infty} -\frac{3}{s} e^{-st} \Big|_0^A$$
$$= -\frac{3}{s} \left(\lim_{A \to \infty} e^{-sA} - 1 \right)$$
$$= \frac{3}{s} \text{ provided } s > 0 \text{ and does not}$$
exist otherwise.

Laplace transforms - examples (6.1)

• What is the Laplace transform of y(t) = 3 ?

$$\begin{split} \mathcal{L}\{y(t)\} &= Y(s) = \int_0^\infty e^{-st} 3 \ dt \\ &= \frac{3}{s} \quad \text{provided } s > 0 \text{ and does not} \\ &\quad \text{exist otherwise.} \end{split}$$

