Today

- Summary of $2 x 2$ systems
- Non-homogeneous two-tank example
- Intro to Laplace transforms

Summary - homogeneous 2×2 systems

(A) stable node
(B) unstable node

(C) stable spiral

(D) unstable spiral

(E) saddle

Summary - homogeneous 2×2 systems

Repeated evalue cases:
有 $\lambda<0$, two indep. evectors.
$\lambda<0$, only one evector.

$\lambda>0$, two indep. evectors.
$\lambda>0$, only one evector.

One zero evalue (singular matrix):

$$
\lambda_{1}=0, \lambda_{2}<0,
$$

$$
\lambda_{1}=0, \lambda_{2}>0,
$$

Nonhomogeneous case - example

- Salt water flows into a tank holding 10 L of water at a rate of $1 \mathrm{~L} / \mathrm{min}$ with a concentration of $200 \mathrm{~g} / \mathrm{L}$. The well-mixed solution flows from that tank into a tank holding 5 L through a pipe at $3 \mathrm{~L} / \mathrm{min}$. Another pipe takes the solution in the second tank back into the first at a rate of $2 \mathrm{~L} /$ min. Finally, solution drains out of the second tank at a rate of $1 \mathrm{~L} / \mathrm{min}$.
- Write down a system of equations in matrix form for the mass of salt in each tank.

$$
\binom{m_{1}}{m_{2}}^{\prime}=\left(\begin{array}{cc}
-\frac{3}{10} & \frac{2}{5} \\
\frac{3}{10} & -\frac{3}{5}
\end{array}\right)\binom{m_{1}}{m_{2}}+\binom{200}{0}
$$

Nonhomogeneous case - example

- Salt water flows into a tank holding 10 L of water at a rate of $1 \mathrm{~L} / \mathrm{min}$ with a concentration of $200 \mathrm{~g} / \mathrm{L}$. The well-mixed solution flows from that tank into a tank holding 5 L through a pipe at $3 \mathrm{~L} / \mathrm{min}$. Another pipe takes the solution in the second tank back into the first at a rate of $2 \mathrm{~L} /$ min. Finally, solution drains out of the second tank at a rate of $1 \mathrm{~L} / \mathrm{min}$.
- Find the eigenvalues and the long term (steady state) solution.

$$
\begin{aligned}
&\binom{m_{1}}{m_{2}}^{\prime}=\left(\begin{array}{cc}
-\frac{3}{10} & \frac{2}{5} \\
\frac{3}{10} & -\frac{3}{5}
\end{array}\right)\binom{m_{1}}{m_{2}}+\binom{200}{0} \\
& \operatorname{tr} A=-\frac{9}{10} \\
&(\operatorname{tr} A)^{2}=\frac{81}{100} \\
& \operatorname{det} A=\frac{9}{50}-\frac{6}{50}=\frac{3}{50}
\end{aligned} \quad 4 \operatorname{det} A=\frac{12}{50}
$$

Both evalues negative!

Nonhomogeneous case - example

$$
\begin{aligned}
& \begin{aligned}
&\binom{m_{1}}{m_{2}}=\left(\begin{array}{cc}
-\frac{3}{10} & \frac{2}{5} \\
\frac{3}{10} & -\frac{3}{5}
\end{array}\right)\binom{m_{1}}{m_{2}}+\binom{200}{0} \\
& \operatorname{tr} A=-\frac{9}{10} \quad(\operatorname{tr} A)^{2}=\frac{81}{100}
\end{aligned} \\
& \text { Both evalues } \\
& \text { negative! } \\
& \operatorname{det} A=\frac{9}{50}-\frac{6}{50}=\frac{3}{50} \quad 4 \operatorname{det} A=\frac{12}{50}=\frac{24}{100} \\
& \left.\begin{array}{l}
\mathbf{m}_{\mathbf{h}}(t)=C_{1} e^{\lambda_{1} t} \mathbf{v}_{\mathbf{1}}+C_{2} e^{\lambda_{2} t} \mathbf{v}_{\mathbf{2}} \\
\mathbf{m}_{\mathbf{p}}(t)=\mathbf{w}=\left({ }_{\mathbf{w}}^{1}\right.
\end{array}\right) \quad\left(\lambda_{1,2}=-\frac{9}{20} \pm \frac{\sqrt{57}}{20}\right) \\
& \mathbf{m}_{\mathbf{p}}(t)=\mathbf{w}=\binom{w_{1}}{w_{2}} \\
& \xrightarrow{\emptyset} \mathbf{w}=\binom{2000}{1000}
\end{aligned}
$$

Nonhomogeneous case - example

- A "Method of undetermined coefficients" similar to what we saw for second order equations can be used for systems.
- For this course, l'll only test you on constant nonhomogeneous terms (like the previous example).

Laplace transforms - intro (6.1)

- Motivation for Laplace transforms:
- We know how to solve $a y^{\prime \prime}+b y^{\prime}+c y=g(t)$ when $g(t)$ is polynomial, exponential, trig.
- In applications, $g(t)$ is often "piece-wise continuous" meaning that it consists of a finite number of pieces with jump discontinuities in between. For example,

$$
g(t)=\left\{\begin{array}{cc}
\sin (\omega t) & 0<t<10 \\
0 & t \geq 10
\end{array}\right.
$$

- These can be handled by previous techniques (modified) but it isn't pretty (solve from $\mathrm{t}=0$ to $\mathrm{t}=10$, use $\mathrm{y}(10)$ as the IC for a new problem starting at $\mathrm{t}=10$).

Laplace transforms - intro (6.1)

- Motivation for Laplace transforms - example RLC circuit
- Resistor, inductor and capacitor in series

$$
I^{\prime \prime}(t)+\frac{R}{L} I^{\prime}(t)+\frac{1}{L C} I(t)=v(t)
$$

- If $\mathrm{v}(\mathrm{t})$ comes from radio waves then $v(t)=A \cos (\omega t)$ and the circuit is called a radio receiver.
- For $v(t)=\left\{\begin{array}{cc}1 & 0<t<10 \\ 0 & t \geq 10\end{array}\right.$, the circuit has a switch that gets flipped at $\mathrm{t}=10$.

Laplace transforms - intro (6.1)

- Instead of not-so-pretty techniques, we use Laplace transforms.
- Idea:

Unknown $\mathrm{y}(\mathrm{t})$ that
satisfies some ODE

Transform $\mathrm{y}(\mathrm{t})$
and the ODE

Solve ODE

Invert the
transform

Unknown $\mathrm{Y}(\mathrm{s})$ that
satisfies an algebraic
equation

Folve algebraic eq

- Laplace transform of $\mathrm{y}(\mathrm{t}): \quad \mathcal{L}\{y(t)\}=Y(s)=\int_{0}^{\infty} e^{-s t} y(t) d t$

Laplace transforms - examples (6.1)

- What is the Laplace transform of $y(t)=3$?

$$
\begin{aligned}
\mathcal{L}\{y(t)\}=Y(s) & =\int_{0}^{\infty} e^{-s t} 3 d t \\
& =-\left.\frac{3}{s} e^{-s t}\right|_{0} ^{\infty} \\
& =\lim _{A \rightarrow \infty}-\left.\frac{3}{s} e^{-s t}\right|_{0} ^{A} \\
& =-\frac{3}{s}\left(\lim _{A \rightarrow \infty} e^{-s A}-1\right) \\
& =\frac{3}{s} \text { provided } s>0 \text { and does not } \\
& \text { exist otherwise. }
\end{aligned}
$$

Laplace transforms - examples (6.1)

- What is the Laplace transform of $y(t)=3$?

$$
\begin{aligned}
& \mathcal{L}\{y(t)\}=Y(s)=\int_{0}^{\infty} e^{-s t} 3 d t \\
&=\frac{3}{s} \quad \text { provided } s>0 \text { and does not } \\
& \quad \text { exist otherwise. }
\end{aligned}
$$

