Today

- Step and ramp functions (continued)
- The Dirac Delta function and impulse force
- Modeling with delta-function forcing

Step function forcing (6.3, 6.4)

- Solve using Laplace transforms:

$$
\begin{aligned}
& y^{\prime \prime}+2 y^{\prime}+10 y=g(t)= \begin{cases}0 & \text { for } t<2 \text { and } t \geq 5, \\
1 & \text { for } 2 \leq t<5 . \\
y(0)=0, y^{\prime}(0)=0 .\end{cases}
\end{aligned}
$$

Step function forcing (6.3, 6.4)

- Solve using Laplace transforms:

$$
\begin{aligned}
& y^{\prime \prime}+2 y^{\prime}+10 y=g(t)= \begin{cases}0 & \text { for } t<2 \text { and } t \geq 5, \\
1 & \text { for } 2 \leq t<5 \\
y(0)=0, y^{\prime}(0)=0\end{cases}
\end{aligned}
$$

- The transformed equation is

Step function forcing (6.3, 6.4)

- Solve using Laplace transforms:

$$
\begin{aligned}
& y^{\prime \prime}+2 y^{\prime}+10 y=g(t)= \begin{cases}0 & \text { for } t<2 \text { and } t \geq 5, \\
1 & \text { for } 2 \leq t<5 \\
y(0)=0, y^{\prime}(0)=0\end{cases}
\end{aligned}
$$

- The transformed equation is

$$
s^{2} Y(s)+2 s Y(s)+10 Y(s)=\frac{e^{-2 s}}{s}-\frac{e^{-5 s}}{s}
$$

Step function forcing (6.3, 6.4)

- Solve using Laplace transforms:

$$
\begin{aligned}
& y^{\prime \prime}+2 y^{\prime}+10 y=g(t)= \begin{cases}0 & \text { for } t<2 \text { and } t \geq 5, \\
1 & \text { for } 2 \leq t<5 \\
y(0)=0, y^{\prime}(0)=0\end{cases}
\end{aligned}
$$

- The transformed equation is

$$
\begin{aligned}
& s^{2} Y(s)+2 s Y(s)+10 Y(s)=\frac{e^{-2 s}}{s}-\frac{e^{-5 s}}{s} \\
& Y(s)=\frac{e^{-2 s}-e^{-5 s}}{s\left(s^{2}+2 s+10\right)}
\end{aligned}
$$

Step function forcing (6.3, 6.4)

- Solve using Laplace transforms:

$$
\begin{aligned}
& y^{\prime \prime}+2 y^{\prime}+10 y=g(t)= \begin{cases}0 & \text { for } t<2 \text { and } t \geq 5, \\
1 & \text { for } 2 \leq t<5 \\
y(0)=0, y^{\prime}(0)=0\end{cases}
\end{aligned}
$$

- The transformed equation is

$$
\begin{aligned}
& s^{2} Y(s)+2 s Y(s)+10 Y(s)=\frac{e^{-2 s}}{s}-\frac{e^{-5 s}}{s} \\
& Y(s)=\frac{e^{-2 s}-e^{-5 s}}{s\left(s^{2}+2 s+10\right)}=\left(e^{-2 s}-e^{-5 s}\right) H(s) \\
& H(s)=\frac{1}{s\left(s^{2}+2 s+10\right)}
\end{aligned}
$$

Step function forcing (6.3, 6.4)

- Solve using Laplace transforms:

$$
\begin{aligned}
& y^{\prime \prime}+2 y^{\prime}+10 y=g(t)= \begin{cases}0 & \text { for } t<2 \text { and } t \geq 5, \\
1 & \text { for } 2 \leq t<5\end{cases} \\
& y(0)=0, y^{\prime}(0)=0 .
\end{aligned}
$$

- The transformed equation is

$$
\begin{gathered}
s^{2} Y(s)+2 s Y(s)+10 Y(s)=\frac{e^{-2 s}}{s}-\frac{e^{-5 s}}{s} . \\
Y(s)=\frac{e^{-2 s}-e^{-5 s}}{s\left(s^{2}+2 s+10\right)}=\left(e^{-2 s}-e^{-5 s}\right) H(s) . \\
\text { - Recall that } \mathcal{L}\left\{u_{c}(t) f(t-c)\right\}=e^{-s c} F(s) \quad H(s)=\frac{1}{s\left(s^{2}+2 s+10\right)}
\end{gathered}
$$

Step function forcing (6.3, 6.4)

- Solve using Laplace transforms:

$$
\begin{aligned}
& y^{\prime \prime}+2 y^{\prime}+10 y=g(t)= \begin{cases}0 & \text { for } t<2 \text { and } t \geq 5, \\
1 & \text { for } 2 \leq t<5 \\
y(0)=0, y^{\prime}(0)=0\end{cases}
\end{aligned}
$$

- The transformed equation is

$$
\begin{aligned}
& s^{2} Y(s)+2 s Y(s)+10 Y(s)=\frac{e^{-2 s}}{s}-\frac{e^{-5 s}}{s} \\
& Y(s)=\frac{e^{-2 s}-e^{-5 s}}{s\left(s^{2}+2 s+10\right)}=\left(e^{-2 s}-e^{-5 s}\right) H(s)
\end{aligned}
$$

- Recall that $\mathcal{L}\left\{u_{c}(t) f(t-c)\right\}=e^{-s c} F(s)$

$$
H(s)=\frac{1}{s\left(s^{2}+2 s+10\right)}
$$ $H(s)=\frac{1}{s\left(s^{2}+2 s+10\right)}$

$$
y(t)=u_{2}(t) h(t-2)-u_{5}(t) h(t-5)
$$

Step function forcing (6.3, 6.4)

- Solve using Laplace transforms:

$$
\begin{aligned}
& y^{\prime \prime}+2 y^{\prime}+10 y=g(t)= \begin{cases}0 & \text { for } t<2 \text { and } t \geq 5, \\
1 & \text { for } 2 \leq t<5\end{cases} \\
& y(0)=0, y^{\prime}(0)=0
\end{aligned}
$$

- The transformed equation is

$$
\begin{aligned}
& s^{2} Y(s)+2 s Y(s)+10 Y(s)=\frac{e^{-2 s}}{s}-\frac{e^{-5 s}}{s} \\
& Y(s)=\frac{e^{-2 s}-e^{-5 s}}{s\left(s^{2}+2 s+10\right)}=\left(e^{-2 s}-e^{-5 s}\right) H(s)
\end{aligned}
$$

- Recall that $\mathcal{L}\left\{u_{c}(t) f(t-c)\right\}=e^{-s c} F(s)$

$$
H(s)=\frac{1}{s\left(s^{2}+2 s+10\right)}
$$ $H(s)=\frac{1}{s\left(s^{2}+2 s+10\right)}$

$$
y(t)=u_{2}(t) h(t-2)-u_{5}(t) h(t-5)
$$

- So we just need $\mathrm{h}(\mathrm{t})$ and we're done.

Step function forcing $(6.3,6.4)$

- Inverting $\mathrm{H}(\mathrm{s})$ to get $\mathrm{h}(\mathrm{t}): H(s)=\frac{1}{s\left(s^{2}+2 s+10\right)}$

Step function forcing (6.3, 6.4)

- Inverting $\mathrm{H}(\mathrm{s})$ to get $\mathrm{h}(\mathrm{t}): H(\mathrm{~s})=\frac{1}{s\left(s^{2}+2 s+10\right)}$

Step function forcing (6.3, 6.4)

- Inverting $\mathrm{H}(\mathrm{s})$ to get $\mathrm{h}(\mathrm{t}): H(s)=\frac{1}{s\left(s^{2}+2 s+10\right)}$ Partial fraction
decomposition!
-Does $s^{2}+2 s+10$ factor? No real factors.

Step function forcing (6.3, 6.4)

- Inverting $\mathrm{H}(\mathrm{s})$ to get $\mathrm{h}(\mathrm{t}): H(s)=\frac{1}{s\left(s^{2}+2 s+10\right)}$

> Partial fraction decomposition!
-Does $s^{2}+2 s+10$ factor? No real factors.

$$
H(s)=\frac{1}{s\left(s^{2}+2 s+10\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+2 s+10}
$$

Step function forcing (6.3, 6.4)

- Inverting $\mathrm{H}(\mathrm{s})$ to get $\mathrm{h}(\mathrm{t}): H(s)=\frac{1}{s\left(s^{2}+2 s+10\right)}$

> Partial fraction decomposition!
-Does $s^{2}+2 s+10$ factor? No real factors.

$$
\begin{gathered}
H(s)=\frac{1}{s\left(s^{2}+2 s+10\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+2 s+10} \\
A=\frac{1}{10}, B=-\frac{1}{10}, C=-\frac{1}{5} .
\end{gathered}
$$

Step function forcing (6.3, 6.4)

- Inverting $\mathrm{H}(\mathrm{s})$ to get $\mathrm{h}(\mathrm{t}): H(s)=\frac{1}{s\left(s^{2}+2 s+10\right)}$

> Partial fraction decomposition!
-Does $s^{2}+2 s+10$ factor? No real factors.

$$
\begin{gathered}
H(s)=\frac{1}{s\left(s^{2}+2 s+10\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+2 s+10} \\
A=\frac{1}{10}, B=-\frac{1}{10}, C=-\frac{1}{5} .
\end{gathered}
$$

- See Supplemental notes for the rest of the calculation (pdf and video): https://wiki.math.ubc.ca/mathbook/M256/Resources

Step function forcing (6.3, 6.4)

- Inverting $\mathrm{H}(\mathrm{s})$ to get $\mathrm{h}(\mathrm{t}): \quad H(s)=\frac{1}{s\left(s^{2}+2 s+10\right)}$ Partial fraction
decomposition!
-Does $s^{2}+2 s+10$ factor? No real factors.

$$
\begin{gathered}
H(s)=\frac{1}{s\left(s^{2}+2 s+10\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+2 s+10} \\
A=\frac{1}{10}, B=-\frac{1}{10}, C=-\frac{1}{5} .
\end{gathered}
$$

- See Supplemental notes for the rest of the calculation (pdf and video): https://wiki.math.ubc.ca/mathbook/M256/Resources
$h(t)=\frac{1}{10}-\frac{1}{10} e^{-t} \cos (3 t)-\frac{1}{30} \cdot e^{-t} \sin 3 t$

Step function forcing (6.3, 6.4)

- Inverting $\mathrm{H}(\mathrm{s})$ to get $\mathrm{h}(\mathrm{t}): \quad H(s)=\frac{1}{s\left(s^{2}+2 s+10\right)}$

> Partial fraction decomposition!
-Does $s^{2}+2 s+10$ factor? No real factors.

$$
\begin{gathered}
H(s)=\frac{1}{s\left(s^{2}+2 s+10\right)}=\frac{A}{s}+\frac{B s+C}{s^{2}+2 s+10} \\
A=\frac{1}{10}, B=-\frac{1}{10}, C=-\frac{1}{5}
\end{gathered}
$$

$$
y(t)=u_{2}(t) h(t-2)-u_{5}(t) h(t-5)
$$

https://wiki.math.ubc.ca/mathbook/M256/Resources
ideo):
$h(t)=\frac{1}{10}-\frac{1}{10} e^{-t} \cos (3 t)-\frac{1}{30} \cdot e^{-t} \sin 3 t$

Step function forcing (6.3, 6.4)

- Inverting $\mathrm{H}(\mathrm{s})$ to get $\mathrm{h}(\mathrm{t}): H(\mathrm{~s})=\frac{1}{s\left(s^{2}+2 s+10\right)}$

> Partial fraction decomposition!

$$
A=\frac{1}{10}, B=-\frac{1}{10}, C=-\frac{1}{5} .
$$

$$
y(t)=u_{2}(t) h(t-2)-u_{5}(t) h(t-5)
$$

$$
\zeta \uparrow
$$

- See Supplemental notes for the rest of the calculation (pdf and video): https://wiki.math.ubc.ca/mathbook/M256/Resources
$h(t)=\frac{1}{10}-\frac{1}{10} e^{-t} \cos (3 t)-\frac{1}{30} \cdot e^{-t} \sin 3 t$

Step function forcing (6.3, 6.4)

- Inverting $\mathrm{H}(\mathrm{s})$ to get $\mathrm{h}(\mathrm{t}): H(\mathrm{~s})=\frac{1}{s\left(s^{2}+2 s+10\right)}$

> Partial fraction decomposition!

$$
y(t)=u_{2}(t) h(t-2)-u_{5}(t) h(t-5)
$$

Iculation (pdf and video): https://wiki.math.ubc.ca/mathbook/M256/Resources

$$
h(t)=\frac{1}{10}-\frac{1}{10} e^{-t} \cos (3 t)-\frac{1}{30} \cdot e^{-t} \sin 3 t
$$

Step function forcing (6.3, 6.4)

- An example with a ramped forcing function:

$$
\begin{aligned}
& y^{\prime \prime}+4 y=\left\{\begin{array}{cl}
0 & \text { for } t<5 \\
\frac{t-5}{5} & \text { for } 5 \leq t<10 \\
1 & \text { for } t \geq 10
\end{array}\right. \\
& y(0)=0, y^{\prime}(0)=0
\end{aligned}
$$

Step function forcing (6.3, 6.4)

- An example with a ramped forcing function:

$$
\begin{aligned}
& y^{\prime \prime}+4 y=\left\{\begin{array}{cl}
0 & \text { for } t<5 \\
\frac{t-5}{5} & \text { for } 5 \leq t<10 \\
1 & \text { for } t \geq 10
\end{array}\right. \\
& y(0)=0, y^{\prime}(0)=0
\end{aligned}
$$

-Write $\mathrm{g}(\mathrm{t})$ is terms of $\mathrm{u}_{\mathrm{c}}(\mathrm{t})$:

$$
\begin{aligned}
& \text { (A) } g(t)=u_{5}(t)-u_{10}(t) \\
& \text { (B) } g(t)=u_{5}(t)(t-5)-u_{10}(t)(t-5) \\
& \text { (C) } g(t)=\left(u_{5}(t)(t-5)-u_{10}(t)(t-10)\right) / 5 \\
& \text { (D) } g(t)=\left(u_{5}(t)(t-5)-u_{10}(t)(t-10)\right) / 10
\end{aligned}
$$

Step function forcing (6.3, 6.4)

- An example with a ramped forcing function:

$$
\begin{aligned}
& y^{\prime \prime}+4 y=\left\{\begin{array}{cl}
0 & \text { for } t<5 \\
\frac{t-5}{5} & \text { for } 5 \leq t<10 \\
1 & \text { for } t \geq 10
\end{array}\right. \\
& y(0)=0, y^{\prime}(0)=0
\end{aligned}
$$

-Write $\mathrm{g}(\mathrm{t})$ is terms of $\mathrm{u}_{\mathrm{c}}(\mathrm{t})$:

$$
\text { (A) } g(t)=u_{5}(t)-u_{10}(t)
$$

(B) $g(t)=u_{5}(t)(t-5)-u_{10}(t)(t-5)$
$\omega(\mathrm{C}) g(t)=\left(u_{5}(t)(t-5)-u_{10}(t)(t-10)\right) / 5$
(D) $g(t)=\left(u_{5}(t)(t-5)-u_{10}(t)(t-10)\right) / 10$

Step function forcing (6.3, 6.4)

- An example with a ramped forcing function:

(l)

Two methods:

1. Build from left to right, adding/subtracting what you need to make the next section:

$$
g(t)=u_{5}(t) \frac{1}{5}(t-5)-u_{10}(t) \frac{1}{5}(t-10)
$$

2. Build each section independently:

$$
g(t)=\left(u_{5}(t)-u_{10}(t)\right) \frac{1}{5}(t-5)+u_{10}(t) \cdot 1
$$

$\omega(\mathrm{C}) g(t)=\left(u_{5}(t)(t-5)-u_{10}(t)(t-10)\right) / 5$
(D) $g(t)=\left(u_{5}(t)(t-5)-u_{10}(t)(t-10)\right) / 10$

Step function forcing (6.3, 6.4)

- An example with a ramped forcing function:

$$
\begin{aligned}
& y^{\prime \prime}+4 y=u_{5}(t) \frac{1}{5}(t-5)-u_{10}(t) \frac{1}{5}(t-10) \\
& y(0)=0, y^{\prime}(0)=0
\end{aligned}
$$

Step function forcing (6.3, 6.4)

- An example with a ramped forcing function:

$$
\begin{aligned}
& y^{\prime \prime}+4 y=u_{5}(t) \frac{1}{5}(t-5)-u_{10}(t) \frac{1}{5}(t-10) \\
& y(0)=0, y^{\prime}(0)=0 \\
& s^{2} Y+4 Y=
\end{aligned}
$$

Step function forcing (6.3, 6.4)

- An example with a ramped forcing function:

$$
\begin{aligned}
& y^{\prime \prime}+4 y=u_{5}(t) \frac{1}{5}(t-5)-u_{10}(t) \frac{1}{5}(t-10) \\
& y(0)=0, y^{\prime}(0)=0 \\
& s^{2} Y+4 Y=\frac{1}{5} \frac{e^{-5 s}-e^{-10 s}}{s^{2}} \\
& Y(s)=\frac{1}{5} \frac{e^{-5 s}-e^{-10 s}}{s^{2}\left(s^{2}+4\right)}=\frac{1}{5}\left(e^{-5 s}-e^{-10 s}\right) H(s) \\
& y(t)=\frac{1}{5}\left[u_{5}(t) h(t-5)-u_{10}(t) h(t-10)\right]
\end{aligned}
$$

Step function forcing (6.3, 6.4)

- An example with a ramped forcing function:

$$
\begin{aligned}
& \text { - An example with a ramped forcing function: } \\
& \begin{array}{l}
y^{\prime \prime}+4 y=u_{5}(t) \frac{1}{5}(t-5)-u_{10}(t) \frac{1}{5}(t-10) \\
y(0)=0, y^{\prime}(0)=0 \\
s^{2} Y+4 Y=\frac{1}{5} \frac{e^{-5 s}-e^{-10 s}}{s^{2}} \\
Y(s)=\frac{1}{5} \frac{e^{-5 s}-e^{-10 s}}{s^{2}\left(s^{2}+4\right)}=\frac{1}{5}\left(e^{-5 s}-e^{-10 s}\right) H(s) \\
y(t)=\frac{1}{5}\left[u_{5}(t) h(t-5)-u_{10}(t) h(t-10)\right]
\end{array}
\end{aligned}
$$

- Find $\mathrm{h}(\mathrm{t})$ given that $H(s)=\frac{1}{s^{2}\left(s^{2}+4\right)}$.

Step function forcing (6.3, 6.4)

- An example with a ramped forcing function:

$$
\begin{aligned}
& \text { - An example with a ramped forcing function: } \\
& \begin{array}{l}
y^{\prime \prime}+4 y=u_{5}(t) \frac{1}{5}(t-5)-u_{10}(t) \frac{1}{5}(t-10) \\
y(0)=0, y^{\prime}(0)=0 . \\
s^{2} Y+4 Y=\frac{1}{5} \frac{e^{-5 s}-e^{-10 s}}{s^{2}} \\
Y(s)=\frac{1}{5} \frac{e^{-5 s}-e^{-10 s}}{s^{2}\left(s^{2}+4\right)}=\frac{1}{5}\left(e^{-5 s}-e^{-10 s}\right) H(s) \\
y(t)=\frac{1}{5}\left[u_{5}(t) h(t-5)-u_{10}(t) h(t-10)\right]
\end{array}
\end{aligned}
$$

Find $\mathrm{h}(\mathrm{t})$ given that $H(s)=\frac{1}{s^{2}\left(s^{2}+4\right)}$.

$$
h(t)=\frac{1}{4} t-\frac{1}{8} \sin (2 t)
$$

Delta-function forcing (6.5)

- Suppose a mass is sitting at position x and a force $\mathrm{g}(\mathrm{t})$ acts on it:

$$
m x^{\prime \prime}=g(t)
$$

Delta-function forcing (6.5)

- Suppose a mass is sitting at position x and a force $g(t)$ acts on it:

$$
m x^{\prime \prime}=g(t)
$$

- To find $\mathrm{x}(\mathrm{t})$, integrate up:

$$
\int_{a}^{b} m x^{\prime \prime} d t=\int_{a}^{b} g(t) d t
$$

Delta-function forcing (6.5)

- Suppose a mass is sitting at position x and a force $\mathrm{g}(\mathrm{t})$ acts on it:

$$
m x^{\prime \prime}=g(t)
$$

- To find $\mathrm{x}(\mathrm{t})$, integrate up:

$$
\begin{gathered}
\int_{a}^{b} m x^{\prime \prime} d t=\int_{a}^{b} g(t) d t \\
\left.m x^{\prime}\right|_{a} ^{b}=\int_{a}^{b} g(t) d t
\end{gathered}
$$

Delta-function forcing (6.5)

- Suppose a mass is sitting at position x and a force $\mathrm{g}(\mathrm{t})$ acts on it:

$$
m x^{\prime \prime}=g(t)
$$

- To find $\mathrm{x}(\mathrm{t})$, integrate up:

$$
\begin{gathered}
\int_{a}^{b} m x^{\prime \prime} d t=\int_{a}^{b} g(t) d t \\
\left.m x^{\prime}\right|_{a} ^{b}=\int_{a}^{b} g(t) d t \\
m v(b)-m v(a)=\int_{a}^{b} g(t) d t
\end{gathered}
$$

Delta-function forcing (6.5)

- Suppose a mass is sitting at position x and a force $g(t)$ acts on it:

$$
m x^{\prime \prime}=g(t)
$$

- To find $\mathrm{x}(\mathrm{t})$, integrate up:

$$
\begin{gathered}
\int_{a}^{b} m x^{\prime \prime} d t=\int_{a}^{b} g(t) d t \\
\left.m x^{\prime}\right|_{a} ^{b}=\int_{a}^{b} g(t) d t \\
m v(b)-m v(a)=\int_{a}^{b} g(t) d t
\end{gathered}
$$

- $\int_{a}^{b} g(t) d t$ is the change in momentum of the mass - called impulse.

Delta-function forcing (6.5)

- Suppose a mass is sitting at position x and a force $\mathrm{g}(\mathrm{t})$ acts on it:

$$
m x^{\prime \prime}=g(t)
$$

- To find $x(t)$, integrate up:

$$
\begin{gathered}
\int_{a}^{b} m x^{\prime \prime} d t=\int_{a}^{b} g(t) d t \\
\left.m x^{\prime}\right|_{a} ^{b}=\int_{a}^{b} g(t) d t \\
m v(b)-m v(a)=\int_{a}^{b} g(t) d t
\end{gathered}
$$

- $\int_{a}^{b} g(t) d t$ is the change in momentum of the mass - called impulse.
- If the force is large and sudden (say a hammer hitting the mass), maybe we just need to get this integral correct and the details don't matter.

Delta-function forcing (6.5)

- Let's assume $g(t)= \begin{cases}\frac{I_{0}}{2 \tau} & -\tau<t<\tau \\ 0 & \text { otherwise }\end{cases}$

Delta-function forcing (6.5)

- Let's assume $g(t)= \begin{cases}\frac{I_{0}}{2 \tau} & -\tau<t<\tau \\ 0 & \text { otherwise }\end{cases}$
Δ momentum $=$

Delta-function forcing (6.5)

- Let's assume $g(t)= \begin{cases}\frac{I_{0}}{2 \tau} & -\tau<t<\tau \\ 0 & \text { otherwise }\end{cases}$

$$
\Delta \text { momentum }=\int_{-\infty}^{\infty} g(t) d t
$$

Delta-function forcing (6.5)

- Let's assume $g(t)= \begin{cases}\frac{I_{0}}{2 \tau} & -\tau<t<\tau \\ 0 & \text { otherwise }\end{cases}$

$$
\Delta \text { momentum }=\int_{-\infty}^{\infty} g(t) d t=\int_{-\tau}^{\tau} \frac{I_{0}}{2 \tau} d t
$$

Delta-function forcing (6.5)

- Let's assume $g(t)= \begin{cases}\frac{I_{0}}{2 \tau} & -\tau<t<\tau \\ 0 & \text { otherwise }\end{cases}$

$$
\Delta \text { momentum }=\int_{-\infty}^{\infty} g(t) d t=\int_{-\tau}^{\tau} \frac{I_{0}}{2 \tau} d t=I_{0}
$$

Delta-function forcing (6.5)

- Let's assume $g(t)= \begin{cases}\frac{I_{0}}{2 \tau} & -\tau<t<\tau \\ 0 & \text { otherwise }\end{cases}$
impulse $=\Delta$ momentum $=\int_{-\infty}^{\infty} g(t) d t=\int_{-\tau}^{\tau} \frac{I_{0}}{2 \tau} d t=I_{0}$

Delta-function forcing (6.5)

- Let's assume $g(t)= \begin{cases}\frac{I_{0}}{2 \tau} & -\tau<t<\tau \\ 0 & \text { otherwise }\end{cases}$
impulse $=\Delta$ momentum $=\int_{-\infty}^{\infty} g(t) d t=\int_{-\tau}^{\tau} \frac{I_{0}}{2 \tau} d t=I_{0}$
- For general purposes (any property that might change quickly, not just momentum), we define the Dirac Delta "function" as follows:

Delta-function forcing (6.5)

- Let's assume $g(t)= \begin{cases}\frac{I_{0}}{2 \tau} & -\tau<t<\tau \\ 0 & \text { otherwise }\end{cases}$
impulse $=\Delta$ momentum $=\int_{-\infty}^{\infty} g(t) d t=\int_{-\tau}^{\tau} \frac{I_{0}}{2 \tau} d t=I_{0}$
- For general purposes (any property that might change quickly, not just momentum), we define the Dirac Delta "function" as follows:
$d_{\tau}(t)= \begin{cases}\frac{1}{2 \tau} & -\tau<t<\tau \\ 0 & \text { otherwise }\end{cases}$

Delta-function forcing (6.5)

- Let's assume $g(t)= \begin{cases}\frac{I_{0}}{2 \tau} & -\tau<t<\tau \\ 0 & \text { otherwise }\end{cases}$
impulse $=\Delta$ momentum $=\int_{-\infty}^{\infty} g(t) d t=\int_{-\tau}^{\tau} \frac{I_{0}}{2 \tau} d t=I_{0}$
- For general purposes (any property that might change quickly, not just momentum), we define the Dirac Delta "function" as follows:
$d_{\tau}(t)= \begin{cases}\frac{1}{2 \tau} & -\tau<t<\tau \\ 0 & \text { otherwise }\end{cases}$
$\delta(t)=\lim _{\tau \rightarrow 0} d_{\tau}(t)$

Delta-function forcing (6.5)

- Let's assume $g(t)= \begin{cases}\frac{I_{0}}{2 \tau} & -\tau<t<\tau \\ 0 & \text { otherwise }\end{cases}$
impulse $=\Delta$ momentum $=\int_{-\infty}^{\infty} g(t) d t=\int_{-\tau}^{\tau} \frac{I_{0}}{2 \tau} d t=I_{0}$
- For general purposes (any property that might change quickly, not just momentum), we define the Dirac Delta "function" as follows:
$d_{\tau}(t)=\left\{\begin{array}{cc}\frac{1}{2 \tau} & -\tau<t<\tau \\ 0 & \text { otherwise }\end{array}\right.$
$\delta(t)=\lim _{\tau \rightarrow 0} d_{\tau}(t)=\left\{\begin{array}{cc}" \infty " & \text { for } t=0, \\ 0 & \text { for } t \neq 0 .\end{array}\right.$

Delta-function forcing (6.5)

- Let's assume $g(t)= \begin{cases}\frac{I_{0}}{2 \tau} & -\tau<t<\tau \\ 0 & \text { otherwise }\end{cases}$
impulse $=\Delta$ momentum $=\int_{-\infty}^{\infty} g(t) d t=\int_{-\tau}^{\tau} \frac{I_{0}}{2 \tau} d t=I_{0}$
- For general purposes (any property that might change quickly, not just momentum), we define the Dirac Delta "function" as follows:
$d_{\tau}(t)=\left\{\begin{array}{cc}\frac{1}{2 \tau} & -\tau<t<\tau \\ 0 & \text { otherwise }\end{array}\right.$
$\delta(t)=\lim _{\tau \rightarrow 0} d_{\tau}(t)=\left\{\begin{array}{cc}" \infty " & \text { for } t=0, \\ 0 & \text { for } t \neq 0 .\end{array}\right.$

$$
g(t)=I_{0} d_{\tau}(t)
$$

Delta-function forcing (6.5)

- Let's assume $g(t)= \begin{cases}\frac{I_{0}}{2 \tau} & -\tau<t<\tau \\ 0 & \text { otherwise }\end{cases}$
impulse $=\Delta$ momentum $=\int_{-\infty}^{\infty} g(t) d t=\int_{-\tau}^{\tau} \frac{I_{0}}{2 \tau} d t=I_{0}$
- For general purposes (any property that might change quickly, not just momentum), we define the Dirac Delta "function" as follows:
$d_{\tau}(t)= \begin{cases}\frac{1}{2 \tau} & -\tau<t<\tau \\ 0 & \text { otherwise }\end{cases}$
$\delta(t)=\lim _{\tau \rightarrow 0} d_{\tau}(t)=\left\{\begin{array}{cc}" \infty " & \text { for } t=0, \\ 0 & \text { for } t \neq 0 .\end{array}\right.$

$$
g(t)=I_{0} d_{\tau}(t)
$$

- Io can be replaced by any type of quantity
- e.g. mo mass added to tank suddenly

Some facts about the Delta "function"

$$
\int_{a}^{b} \delta(t) d t=1 \quad a<0, b>0 \quad \text { and }=0 \text { otherwise. }
$$

Some facts about the Delta "function"

$$
\begin{aligned}
& \int_{a}^{b} \delta(t) d t=1 \quad a<0, b>0 \quad \text { and }=0 \text { otherwise. } \\
& \int_{a}^{b} f(t) \delta(t) d t=\lim _{\tau \rightarrow 0} \frac{1}{2 \tau} \int_{-\tau}^{\tau} f(t) d t
\end{aligned}
$$

Some facts about the Delta "function"

$$
\begin{aligned}
& \int_{a}^{b} \delta(t) d t=1 \quad a<0, b>0 \quad \text { and }=0 \text { otherwise. } \\
& \begin{aligned}
\int_{a}^{b} f(t) \delta(t) d t & =\lim _{\tau \rightarrow 0} \frac{1}{2 \tau} \int_{-\tau}^{\tau} f(t) d t \\
& =\lim _{\tau \rightarrow 0} \frac{F(\tau)-F(-\tau)}{2 \tau} \quad F^{\prime}(t)=f(t)
\end{aligned}
\end{aligned}
$$

Some facts about the Delta "function"

$$
\begin{aligned}
& \int_{a}^{b} \delta(t) d t=1 \quad a<0, b>0 \quad \text { and }=0 \text { otherwise } \\
& \begin{aligned}
\int_{a}^{b} f(t) \delta(t) d t & =\lim _{\tau \rightarrow 0} \frac{1}{2 \tau} \int_{-\tau}^{\tau} f(t) d t \\
& =\lim _{\tau \rightarrow 0} \frac{F(\tau)-F(-\tau)}{2 \tau} \quad F^{\prime}(t)=f(t) \\
& =F^{\prime}(0)
\end{aligned}
\end{aligned}
$$

Some facts about the Delta "function"

$$
\begin{aligned}
& \int_{a}^{b} \delta(t) d t=1 \quad a<0, b>0 \quad \text { and }=0 \text { otherwise. } \\
& \begin{aligned}
\int_{a}^{b} f(t) \delta(t) d t & =\lim _{\tau \rightarrow 0} \frac{1}{2 \tau} \int_{-\tau}^{\tau} f(t) d t \\
= & \lim _{\tau \rightarrow 0} \frac{F(\tau)-F(-\tau)}{2 \tau} \quad F^{\prime}(t)=f(t) \\
= & F^{\prime}(0)=f(0)
\end{aligned}
\end{aligned}
$$

Some facts about the Delta "function"

$$
\begin{aligned}
& \int_{a}^{b} \delta(t) d t=1 \quad a<0, b>0 \quad \text { and }=0 \text { otherwise. } \\
& \begin{aligned}
\int_{a}^{b} f(t) \delta(t) d t & =\lim _{\tau \rightarrow 0} \frac{1}{2 \tau} \int_{-\tau}^{\tau} f(t) d t \\
& =\lim _{\tau \rightarrow 0} \frac{F(\tau)-F(-\tau)}{2 \tau} \quad F^{\prime}(t)=f(t) \\
& =F^{\prime}(0)=f(0)
\end{aligned} \\
& \begin{aligned}
\int_{a}^{b} f(t) \delta(t) d t & =f(0) \quad a<0, b>0 \quad \text { and }=0 \text { otherwise. }
\end{aligned}
\end{aligned}
$$

Some facts about the Delta "function"

$$
\begin{aligned}
& \int_{a}^{b} \delta(t) d t=1 \quad a<0, b>0 \quad \text { and }=0 \text { otherwise. } \\
& \begin{aligned}
\int_{a}^{b} f(t) \delta(t) d t & =\lim _{\tau \rightarrow 0} \frac{1}{2 \tau} \int_{-\tau}^{\tau} f(t) d t \\
& =\lim _{\tau \rightarrow 0} \frac{F(\tau)-F(-\tau)}{2 \tau} \\
& =F^{\prime}(0)=f(0)
\end{aligned} \\
& \begin{aligned}
\int_{a}^{b} f(t) \delta(t) d t & =f(0) \quad a<0, b>0 \quad \text { and }=0 \text { otherwise. }
\end{aligned} \\
& \delta(t-c)=\operatorname{shift} \text { of } \delta(t) \text { by c }
\end{aligned}
$$

Some facts about the Delta "function"

$$
\begin{aligned}
& \int_{a}^{b} \delta(t) d t=1 \quad a<0, b>0 \quad \text { and }=0 \text { otherwise. } \\
& \begin{aligned}
\int_{a}^{b} f(t) \delta(t) d t & =\lim _{\tau \rightarrow 0} \frac{1}{2 \tau} \int_{-\tau}^{\tau} f(t) d t \\
& =\lim _{\tau \rightarrow 0} \frac{F(\tau)-F(-\tau)}{2 \tau} \quad F^{\prime}(t)=f(t) \\
& =F^{\prime}(0)=f(0)
\end{aligned} \\
& \begin{aligned}
& \int_{a}^{b} f(t) \delta(t) d t=f(0) \quad a<0, b>0 \quad \text { and }=0 \text { otherwise. } \\
& \delta(t-c)=\operatorname{shift~of~} \delta(t) \text { by c }
\end{aligned} \\
& \mathcal{L}\{\delta(t-c)\}=\int_{0}^{\infty} e^{-s t} \delta(t-c) d t
\end{aligned}
$$

Some facts about the Delta "function"

$$
\delta(t-c)=\text { shift of } \delta(t) \text { by } \mathrm{c}
$$

$$
\begin{aligned}
\mathcal{L}\{\delta(t-c)\} & =\int_{0}^{\infty} e^{-s t} \delta(t-c) d t \\
& =\int_{-c}^{\infty} e^{-s(u+c)} \delta(u) d u
\end{aligned}
$$

$$
\begin{aligned}
& \int_{a}^{b} \delta(t) d t=1 \quad a<0, b>0 \quad \text { and }=0 \text { otherwise. } \\
& \int_{a}^{b} f(t) \delta(t) d t=\lim _{\tau \rightarrow 0} \frac{1}{2 \tau} \int_{-\tau}^{\tau} f(t) d t \\
& =\lim _{\tau \rightarrow 0} \frac{F(\tau)-F(-\tau)}{2 \tau} \\
& F^{\prime}(t)=f(t) \\
& =F^{\prime}(0)=f(0) \\
& \int_{a}^{b} f(t) \delta(t) d t=f(0) \quad a<0, b>0 \quad \text { and }=0 \text { otherwise. }
\end{aligned}
$$

Some facts about the Delta "function"

$$
\begin{aligned}
& \int_{a}^{b} \delta(t) d t=1 \quad a<0, b>0 \quad \text { and }=0 \text { otherwise. } \\
& \begin{aligned}
\int_{a}^{b} f(t) \delta(t) d t & =\lim _{\tau \rightarrow 0} \frac{1}{2 \tau} \int_{-\tau}^{\tau} f(t) d t \\
& =\lim _{\tau \rightarrow 0} \frac{F(\tau)-F(-\tau)}{2 \tau} \quad F^{\prime}(t)=f(t) \\
& =F^{\prime}(0)=f(0)
\end{aligned} \\
& \begin{aligned}
\int_{a}^{b} f(t) \delta(t) d t & =f(0) \quad a<0, b>0 \quad \text { and }=0 \text { otherwise. }
\end{aligned}
\end{aligned}
$$

$$
\delta(t-c)=\text { shift of } \delta(t) \text { by } \mathrm{c}
$$

$$
\begin{aligned}
\mathcal{L}\{\delta(t-c)\} & =\int_{0}^{\infty} e^{-s t} \delta(t-c) d t \\
& =\int_{-c}^{\infty} e^{-s(u+c)} \delta(u) d u=e^{-s c} \text { for } c>0
\end{aligned}
$$

