
Today

• General solutions, independence of functions and the Wronskian

• Distinct roots of the characteristic equation

• Review of complex numbers

• Complex roots of the characteristic equation
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Homog. eq. with constant coeff.  (Section 3.1) 

ay00 + by0 + cy = 0

Last class, we found that if y1(t) 
is a solution to 

then so is y(t) = C1y1(t).
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Homog. eq. with constant coeff.  (Section 3.1) 

• Which of the following functions are also solutions?

(A) y(t) = y1(t)2

(B) y(t) = y1(t)+y2(t)

(C) y(t) = y1(t) y2(t)

(D) y(t) = y1(t) / y2(t)
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(B) y(t) = y1(t)+y2(t)
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(B) y(t) = y1(t)+y2(t)

(C) y(t) = y1(t) y2(t)

(D) y(t) = y1(t) / y2(t)

• In fact, the following are all solutions:   C1y1(t),   C2y2(t),   C1y1(t)+C2y2(t).

• With first order equations, the arbitrary constant appeared through an 
integration step in our methods. With second order equations, not so lucky.
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• In fact, the following are all solutions:   C1y1(t),   C2y2(t),   C1y1(t)+C2y2(t).

• With first order equations, the arbitrary constant appeared through an 
integration step in our methods. With second order equations, not so lucky.

• Instead, find two independent solutions, y1(t), y2(t), by whatever method.
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• Which of the following functions are also solutions?

(A) y(t) = y1(t)2

(B) y(t) = y1(t)+y2(t)

(C) y(t) = y1(t) y2(t)

(D) y(t) = y1(t) / y2(t)

• In fact, the following are all solutions:   C1y1(t),   C2y2(t),   C1y1(t)+C2y2(t).

• With first order equations, the arbitrary constant appeared through an 
integration step in our methods. With second order equations, not so lucky.

• Instead, find two independent solutions, y1(t), y2(t), by whatever method.

• The general solution will be  y(t) = C1y1(t) + C2y2(t).

ay00 + by0 + cy = 0

Last class, we found that if y1(t) 
is a solution to 

then so is y(t) = C1y1(t).
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Homog. eq. with constant coeff.  (Section 3.1) 

• One case where the arbitrary constants DO appear as we calculate:

• More common would be that we find solutions y(t) = 1 and y(t)= e-t and simply 
write down 

y00 + y0 = 0
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Homog. eq. with constant coeff.  (Section 3.1) 

• So in general how do we find the two independent solutions y1 and y2?

4

Saturday, 17 January, 15



Homog. eq. with constant coeff.  (Section 3.1) 

• So in general how do we find the two independent solutions y1 and y2?

• Exponential solutions seem to be common so let’s assume y(t)=ert and see if 
that gets us anything useful..

4

Saturday, 17 January, 15



Homog. eq. with constant coeff.  (Section 3.1) 

• So in general how do we find the two independent solutions y1 and y2?

• Exponential solutions seem to be common so let’s assume y(t)=ert and see if 
that gets us anything useful..

• Solve                              by assuming y(t) = ert for some constant r.y00 + y0 = 0

4

Saturday, 17 January, 15



Homog. eq. with constant coeff.  (Section 3.1) 

• So in general how do we find the two independent solutions y1 and y2?

• Exponential solutions seem to be common so let’s assume y(t)=ert and see if 
that gets us anything useful..

• Solve                              by assuming y(t) = ert for some constant r.y00 + y0 = 0

(ert)00 + (ert)0 = 0

4

Saturday, 17 January, 15



Homog. eq. with constant coeff.  (Section 3.1) 

• So in general how do we find the two independent solutions y1 and y2?

• Exponential solutions seem to be common so let’s assume y(t)=ert and see if 
that gets us anything useful..

• Solve                              by assuming y(t) = ert for some constant r.y00 + y0 = 0

(ert)00 + (ert)0 = 0
r2ert + rert = 0

4

Saturday, 17 January, 15



Homog. eq. with constant coeff.  (Section 3.1) 

• So in general how do we find the two independent solutions y1 and y2?

• Exponential solutions seem to be common so let’s assume y(t)=ert and see if 
that gets us anything useful..

• Solve                              by assuming y(t) = ert for some constant r.y00 + y0 = 0

(ert)00 + (ert)0 = 0
r2ert + rert = 0

r2 + r = 0

4

Saturday, 17 January, 15



Homog. eq. with constant coeff.  (Section 3.1) 

• So in general how do we find the two independent solutions y1 and y2?

• Exponential solutions seem to be common so let’s assume y(t)=ert and see if 
that gets us anything useful..

• Solve                              by assuming y(t) = ert for some constant r.y00 + y0 = 0

(ert)00 + (ert)0 = 0
r2ert + rert = 0

r2 + r = 0
r(r + 1) = 0

4

Saturday, 17 January, 15



Homog. eq. with constant coeff.  (Section 3.1) 

• So in general how do we find the two independent solutions y1 and y2?

• Exponential solutions seem to be common so let’s assume y(t)=ert and see if 
that gets us anything useful..

• Solve                              by assuming y(t) = ert for some constant r.y00 + y0 = 0

(ert)00 + (ert)0 = 0
r2ert + rert = 0

r2 + r = 0
r(r + 1) = 0

r = 0, r = �1
4

Saturday, 17 January, 15



Homog. eq. with constant coeff.  (Section 3.1) 

• So in general how do we find the two independent solutions y1 and y2?

• Exponential solutions seem to be common so let’s assume y(t)=ert and see if 
that gets us anything useful..

• Solve                              by assuming y(t) = ert for some constant r.y00 + y0 = 0

(ert)00 + (ert)0 = 0
r2ert + rert = 0

r2 + r = 0
r(r + 1) = 0

r = 0, r = �1

y = C1e
0 + C2e

�t

4

Saturday, 17 January, 15



Homog. eq. with constant coeff.  (Section 3.1) 

• So in general how do we find the two independent solutions y1 and y2?

• Exponential solutions seem to be common so let’s assume y(t)=ert and see if 
that gets us anything useful..

• Solve                              by assuming y(t) = ert for some constant r.y00 + y0 = 0

(ert)00 + (ert)0 = 0
r2ert + rert = 0

r2 + r = 0
r(r + 1) = 0

r = 0, r = �1
y = C1 + C2e

�t

y = C1e
0 + C2e

�t

4

Saturday, 17 January, 15



Homog. eq. with constant coeff.  (Section 3.1) 

• Solve                               subject to the ICs                                            .y00 � 4y = 0 y(0) = 3, y0(0) = 2
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Homog. eq. with constant coeff.  (Section 3.1) 

• Solve                               subject to the ICs                                            .y00 � 4y = 0

(A) 

(B) 

(C) 

(D) 

(E) 

y(t) = C1e
2t + C2e

�2t

y(t) = 2e2t + e�2t

y(0) = 3, y0(0) = 2

y(t) =
7
4
e4t +

5
4
e�4t

y(t) = e2t + 2e�2t

y(t) = C1e
4t + C2e

�4t
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Homog. eq. with constant coeff.  (Section 3.1) 

• For the general case,                                      , by assuming                      

we get the characteristic equation:

ay00 + by0 + cy = 0 y(t) = ert

ar2 + br + c = 0
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Homog. eq. with constant coeff.  (Section 3.1) 

• For the general case,                                      , by assuming                      

we get the characteristic equation:
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i. Two distinct real roots: b2 - 4ac > 0.  ( r1 ≠ r2 )
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Homog. eq. with constant coeff.  (Section 3.1) 

• For the general case,                                      , by assuming                      

we get the characteristic equation:

• There are three cases.

i. Two distinct real roots: b2 - 4ac > 0.  ( r1 ≠ r2 )

ii.A repeated real root: b2 - 4ac = 0.

iii.Two complex roots: b2 - 4ac < 0.

• For case i, we get                          and                        .

• Do our two solutions cover all possible ICs? That is, can we use them to 
form a general solution?

ay00 + by0 + cy = 0 y(t) = ert

ar2 + br + c = 0

y1(t) = er1t y2(t) = er2t
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Independence and the Wronskian (Section 3.2) 

• Example: Suppose                           and                           are two 
solutions to some equation. Can we solve ANY initial 
condition .                        .            with these two solutions?

• Solve this system for C1, C2...

• Can’t do it. Why? 

y2(t) = e2t�3y1(t) = e2t+3

y(0) = y0, y0(0) = v0
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✓
e3 e�3

2e3 2e�3
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C1

C2

◆
=

✓
y0

v0

◆
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• Example: Suppose                           and                           are two 
solutions to some equation. Can we solve ANY initial 
condition .                        .            with these two solutions?
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• Can’t do it. Why? 
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=
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◆
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✓

e3 e�3

2e3 2e�3

◆
= 0
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Independence and the Wronskian (Section 3.2) 

• For any two solutions to some linear ODE, to ensure that we have a 
general solution, we need to check that

det
✓

y1(0) y2(0)
y0
1(0) y0

2(0)

◆
= y1(0)y0

2(0)� y0
1(0)y2(0) 6= 0

8

Saturday, 17 January, 15



Independence and the Wronskian (Section 3.2) 

• For any two solutions to some linear ODE, to ensure that we have a 
general solution, we need to check that

det
✓

y1(0) y2(0)
y0
1(0) y0

2(0)

◆
= y1(0)y0

2(0)� y0
1(0)y2(0) 6= 0

8

Saturday, 17 January, 15



Independence and the Wronskian (Section 3.2) 

• For any two solutions to some linear ODE, to ensure that we have a 
general solution, we need to check that

• For ICs other than t0=0, we require that
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Independence and the Wronskian (Section 3.2) 

• For any two solutions to some linear ODE, to ensure that we have a 
general solution, we need to check that

• For ICs other than t0=0, we require that

• This quantity is called the Wronskian.
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W (y1, y2)(t) = y1(t)y0
2(t)� y0

1(t)y2(t)
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Independence and the Wronskian (Section 3.2) 
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Independence and the Wronskian (Section 3.2) 
• Two functions y1(t) and y2(t) are linearly independent provided that the 

only way that  C1y1(t) + C2y2(t) = 0 for all values of t is when C1=C2=0.
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Independence and the Wronskian (Section 3.2) 
• Two functions y1(t) and y2(t) are linearly independent provided that the 

only way that  C1y1(t) + C2y2(t) = 0 for all values of t is when C1=C2=0.

Find values of C1≠0 and C2≠0 so that C1y1(t) + C2y2(t) = 0.

y2(t) = e2t�3y1(t) = e2t+3 and are not independent.e.g.

(A) 

(B) 

(C) 

(D) 

(E)  

C1 = e�3, C2 = �e3

C1 = e�3, C2 = e3

C1 = e3, C2 = �e�3

C1 = e�2t�3, C2 = �e�2t+3

C1 = e�2t+3, C2 = �e�2t�3
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Independence and the Wronskian (Section 3.2) 
• Two functions y1(t) and y2(t) are linearly independent provided that the 

only way that  C1y1(t) + C2y2(t) = 0 for all values of t is when C1=C2=0.

• The Wronskian is defined for any two functions, even if they aren’t 
solutions to an ODE.

W (y1, y2)(t) = y1(t)y0
2(t)� y0

1(t)y2(t)

y2(t) = e2t�3y1(t) = e2t+3 and are not independent.e.g.
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• Two functions y1(t) and y2(t) are linearly independent provided that the 

only way that  C1y1(t) + C2y2(t) = 0 for all values of t is when C1=C2=0.

• The Wronskian is defined for any two functions, even if they aren’t 
solutions to an ODE.

• If the Wronskian is nonzero for some t, the functions are linearly 
independent.

• If y1(t) and y2(t) are solutions to an ODE and the Wronskian is nonzero 
then they are independent and 

W (y1, y2)(t) = y1(t)y0
2(t)� y0

1(t)y2(t)

y(t) = C1y1(t) + C2y2(t)
is the general solution. We call y1(t) and y2(t) a fundamental set of solutions 
and we can use them to solve any IC.

y2(t) = e2t�3y1(t) = e2t+3 and are not independent.e.g.
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Independence and the Wronskian (Section 3.2) 

• So for case i (distinct roots),  can we form a general solution from 

y1(t) = er1t y2(t) = er2tand                           ?
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Independence and the Wronskian (Section 3.2) 

• So for case i (distinct roots),  can we form a general solution from 

• Must check the Wronskian:

y1(t) = er1t y2(t) = er2tand                           ?

W (er1t, er2t)(t) = er1tr2e
r2t � r1e

r1ter2t

= (r1 � r2)er1ter2t 6= 0

So yes! y(t) = C1e
r1t + C2e

r2t is the general solution.
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Independence and the Wronskian (Section 3.2) 

• Example: Consider the equation                         . Find the roots of the 
characteristic equation (i.e. the r values).

y00 + 9y = 0
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Distinct roots - asymptotic behaviour (Section 3.1)

• Three cases:
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• Three cases:

(i) Both r values positive.

y(t) = C1e
2t + C2e

5te.g.
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• Three cases:

(i) Both r values positive.

y(t) = C1e
2t + C2e

5te.g.

(A) ...is unbounded for all ICs.

(B) ...is unbounded for most 
ICs but not for a few 
carefully chosen ones.

(C) ...goes to zero for all ICs.

Except for the zero solution 
y(t)=0, the limit                  ...lim

t!1
y(t)
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(A) ...is unbounded for all ICs.

(B) ...is unbounded for most 
ICs but not for a few 
carefully chosen ones.

(C) ...goes to zero for all ICs.

Except for the zero solution 
y(t)=0, the limit                  ...lim

t!1
y(t)

Challenge: come up with an initial condition 
for (iii) that has a bounded solution.
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Complex roots (Section 3.3)

• Complex number review (Euler’s formula)

• Complex roots of the characteristic equation

• From complex solutions to real solutions
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Complex number review

• We define a new number: i =
p
�1

16

Saturday, 17 January, 15



Complex number review

• We define a new number:

• Before, we would get stuck solving any equation that required square-
rooting a negative number. No longer.

i =
p
�1

16

Saturday, 17 January, 15



Complex number review
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• e.g. The solutions to                                   are                      and
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Complex number review

• We define a new number:

• Before, we would get stuck solving any equation that required square-
rooting a negative number. No longer.

• e.g. The solutions to                                   are                      and

• For any equation,                                   , when b2 - 4ac < 0, the solutions 
have the form                         where α and β are both real numbers.
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p
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x
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Complex number review

• We define a new number:

• Before, we would get stuck solving any equation that required square-
rooting a negative number. No longer.

• e.g. The solutions to                                   are                      and

• For any equation,                                   , when b2 - 4ac < 0, the solutions 
have the form                         where α and β are both real numbers.

• For α+βi, we call α the real part and β the imaginary part.

i =
p
�1

x

2 � 4x + 5 = 0 x = 2 + i

x = 2� i

ax

2 + bx + c = 0
x = �± ⇥i
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Complex number review

• Adding two complex numbers:

(a + bi) + (c + di) = a + c + (b + d)i
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Complex number review
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Complex number review

• Adding two complex numbers:

• Multiplying two complex numbers:

• Dividing by a complex number:

(a + bi)(c + di) = ac� bd + (ad + bc)i

(a + bi)/(c + di) = (a + bi)
1

(c + di)

(a + bi) + (c + di) = a + c + (b + d)i
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Complex number review

• Adding two complex numbers:

• Multiplying two complex numbers:

• Dividing by a complex number:

• What is the inverse of c+di?

(a + bi)(c + di) = ac� bd + (ad + bc)i

(a + bi)/(c + di) = (a + bi)
1

(c + di)

(a + bi) + (c + di) = a + c + (b + d)i
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Complex number review

• What is the inverse of c+di written in the usual complex form p+qi?

• Dividing by a complex number:

(A)  

(B) 

(C)  

(D) 

c� di

c + di

c2 + d2

c� di

c2 + d2

1
c� di

18
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Complex number review

• Definitions:

• Conjugate - the conjugate of              is

• Magnitude - the magnitude of               is

a + bi = a� bi

a + bi

a + bi

|a + bi| =
p

a2 + b2

19
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Complex number review

• Geometric interpretation of complex numbers

• e.g. a + bi
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Complex number review

• Geometric interpretation of complex numbers

• e.g. a + bi a = M cos �

b = M sin �
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Complex number review

• Geometric interpretation of complex numbers

• e.g. a + bi

M =
p

a2 + b2

a = M cos �

b = M sin �

� = arctan
✓

b

a

◆
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• Geometric interpretation of complex numbers

• e.g. a + bi

M =
p

a2 + b2

a = M cos �

b = M sin �

� = arctan
✓

b

a

◆

a + bi = M(cos � + i sin �)
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Complex number review

• Geometric interpretation of complex numbers

• e.g. a + bi

M =
p

a2 + b2

a = M cos �

b = M sin �

� = arctan
✓

b

a

◆

a + bi = M(cos � + i sin �)

✓    is sometimes called the 
argument or phase of             .a + bi
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Complex number review
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Complex number review

• Toward Euler’s formula
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Complex number review

• Toward Euler’s formula

• Taylor series - recall that a function can be represented as

f(x) = f(x0) + f

0(x0)(x� x0) +
f

00(x0)
2!

(x� x0)2 + · · ·

21
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Complex number review

• Toward Euler’s formula

• Taylor series - recall that a function can be represented as

• What function has Taylor series 

f(x) = f(x0) + f

0(x0)(x� x0) +
f

00(x0)
2!

(x� x0)2 + · · ·

1� x

2

2!
+

x

4

4!
� · · ·

(A) cos x

(B) sin x

(C) ex

(D) ln x

21
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Complex number review

• Toward Euler’s formula

• Taylor series - recall that a function can be represented as

• What function has Taylor series 

f(x) = f(x0) + f

0(x0)(x� x0) +
f

00(x0)
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(x� x0)2 + · · ·

x� x
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x

5

5!
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(A) cos x
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(D) ln x
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Complex number review

• Toward Euler’s formula

• Taylor series - recall that a function can be represented as

• What function has Taylor series 
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Complex number review

• Toward Euler’s formula

• Taylor series - recall that a function can be represented as

• What function has Taylor series 

f(x) = f(x0) + f

0(x0)(x� x0) +
f

00(x0)
2!

(x� x0)2 + · · ·

1 + x +
x

2

2!
+

x

3

3!
+ · · ·

(A) cos x

(B) sin x

(C) ex

(D) ln x
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Complex number review

• Toward Euler’s formula

• Taylor series - recall that a function can be represented as

• What function has Taylor series 

f(x) = f(x0) + f

0(x0)(x� x0) +
f

00(x0)
2!

(x� x0)2 + · · ·

1 + x +
x

2

2!
+

x

3

3!
+ · · ·

(A) cos x

(B) sin x

(C) ex

(D) ln x
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Complex number review

• Use Taylor series to rewrite                            .cos � + i sin �

sin x = x� x

3

3!
+

x

5

5!
� · · ·

cos x = 1� x

2

2!

+

x

4

4!

� · · ·
22

Saturday, 17 January, 15



Complex number review

• Use Taylor series to rewrite                            .cos � + i sin �

cos � + i sin �

sin x = x� x
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cos x = 1� x
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� · · ·
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Complex number review

• Use Taylor series to rewrite                            .cos � + i sin �

= 1� ✓2

2!
+

✓4

4!
� · · ·cos � + i sin �

sin x = x� x

3

3!
+

x

5

5!
� · · ·

cos x = 1� x

2

2!

+

x

4

4!

� · · ·
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Complex number review

• Use Taylor series to rewrite                            .cos � + i sin �

= 1� ✓2

2!
+

✓4

4!
� · · · +i

✓
� � �3

3!
+

�5

5!
� · · ·

◆
cos � + i sin �

sin x = x� x

3

3!
+

x

5

5!
� · · ·

cos x = 1� x

2

2!

+

x

4

4!

� · · ·
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Complex number review

• Use Taylor series to rewrite                            .cos � + i sin �

= 1� ✓2

2!
+

✓4

4!
� · · · +i

✓
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+
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◆

= 1 + i� + (�1)
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+ (�1)2
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cos � + i sin �
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Complex number review

• Use Taylor series to rewrite                            .cos � + i sin �

= 1� ✓2

2!
+

✓4

4!
� · · · +i

✓
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3!
+

�5
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= 1 + i� + (�1)
�2

2!
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3!
+ (�1)2
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cos � + i sin �

�1 = i2
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Complex number review

• Use Taylor series to rewrite                            .cos � + i sin �

= 1� ✓2

2!
+

✓4

4!
� · · · +i

✓
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3!
+

�5

5!
� · · ·

◆

= 1 + i� + (�1)
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+ · · ·
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+ i4
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4!
+ · · ·

cos � + i sin �

�1 = i2
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Complex number review

• Use Taylor series to rewrite                            .cos � + i sin �

= 1� ✓2

2!
+

✓4

4!
� · · · +i

✓
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3!
+

�5

5!
� · · ·

◆

= 1 + i� + (�1)
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2!
+ (�1)i

�3

3!
+ (�1)2

�4

4!
+ · · ·

= 1 + i� + i2
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2!
+ i3
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+ i4
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4!
+ · · ·

= 1 + i� +
(i�)2

2!
+

(i�)3

3!
+

(i�)4

4!
+ · · ·

cos � + i sin �
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Complex number review

• Use Taylor series to rewrite                            .cos � + i sin �

= 1� ✓2

2!
+

✓4

4!
� · · · +i

✓
� � �3

3!
+

�5

5!
� · · ·

◆

= 1 + i� + (�1)
�2

2!
+ (�1)i

�3

3!
+ (�1)2

�4

4!
+ · · ·

= 1 + i� + i2
�2

2!
+ i3

�3

3!
+ i4

�4

4!
+ · · ·

= 1 + i� +
(i�)2

2!
+

(i�)3

3!
+

(i�)4

4!
+ · · · = ei�

cos � + i sin �
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Complex number review

• Use Taylor series to rewrite                            .cos � + i sin �

= ei�

cos � + i sin �
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Complex number review

• Use Taylor series to rewrite                            .

Euler’s formula:

cos � + i sin �

= ei�
cos � + i sin �
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Complex number review

• Geometric interpretation of complex numbers

• e.g. a + bi

M =
p

a2 + b2

a = M cos �

b = M sin �

� = arctan
✓

b

a

◆

a + bi = M(cos � + i sin �)
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Complex number review

• Geometric interpretation of complex numbers

• e.g. a + bi

M =
p

a2 + b2

a = M cos �

b = M sin �

� = arctan
✓

b

a

◆

a + bi = M(cos � + i sin �)

a + bi = Mei�
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Complex number review

• Geometric interpretation of complex numbers

• e.g. a + bi

M =
p

a2 + b2

a = M cos �

b = M sin �

� = arctan
✓

b

a

◆

a + bi = M(cos � + i sin �)

a + bi = Mei�

(Polar form makes multiplication 
much cleaner)
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