Today

- Summary of 2×2 systems all in one picture
- Non-homogeneous systems of ODEs
- Non-homogeneous two-tank example
- Intro to Laplace transforms

Summary - homogeneous 2×2 systems

- To find eigenvalues of A :

Summary - homogeneous 2×2 systems

- To find eigenvalues of A :

$$
\lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0
$$

Summary - homogeneous 2×2 systems

- To find eigenvalues of A :

$$
\begin{aligned}
& \lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0 \\
& \lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2}
\end{aligned}
$$

Summary - homogeneous 2×2 systems

- To find eigenvalues of A :

$$
\begin{gathered}
\lambda^{2}-\operatorname{tr} A \lambda+\operatorname{det} A=0 \\
\lambda=\frac{\operatorname{tr} A \pm \sqrt{(\operatorname{tr} A)^{2}-4 \operatorname{det} A}}{2} \\
(\operatorname{tr} A)^{2}=4 \operatorname{det} A
\end{gathered}
$$

Summary - homogeneous 2×2 systems

Summary - homogeneous 2×2 systems

Repeated evalue cases:

* $\lambda<0$, two indep. evectors.
$\lambda<0$, only one evector.

$\lambda>0$, two indep. evectors.
$\lambda>0$, only one evector.

One zero evalue (singular matrix):

$$
\lambda_{1}=0, \lambda_{2}<0,
$$

$\lambda_{1}=0, \lambda_{2}>0$,

Nonhomogeneous system of DEs

- How do you solve the equation

$$
\mathbf{x}^{\prime}(\mathbf{t})=A \mathbf{x}(\mathbf{t})+\mathbf{b} ?
$$

Nonhomogeneous system of DEs

- How do you solve the equation

$$
\mathbf{x}^{\prime}(\mathbf{t})=A \mathbf{x}(\mathbf{t})+\mathbf{b} ?
$$

- Define the linear operator

$$
L[\mathbf{x}]=\mathbf{x}^{\prime}(\mathbf{t})-A \mathbf{x}(\mathbf{t})
$$

Nonhomogeneous system of DEs

- How do you solve the equation

$$
\mathbf{x}^{\prime}(\mathbf{t})=A \mathbf{x}(\mathbf{t})+\mathbf{b} ?
$$

- Define the linear operator

$$
L[\mathbf{x}]=\mathbf{x}^{\prime}(\mathbf{t})-A \mathbf{x}(\mathbf{t})
$$

- The equation above can be written as

$$
L[\mathbf{x}]=\mathbf{b}
$$

Nonhomogeneous system of DEs

- How do you solve the equation

$$
\mathbf{x}^{\prime}(\mathbf{t})=A \mathbf{x}(\mathbf{t})+\mathbf{b} ?
$$

- Define the linear operator

$$
L[\mathbf{x}]=\mathbf{x}^{\prime}(\mathbf{t})-A \mathbf{x}(\mathbf{t})
$$

- The equation above can be written as

$$
L[\mathbf{x}]=\mathbf{b}
$$

- As for $2^{\text {nd }}$ order equations, solve homogeneous eqn first,

$$
L[\mathbf{x}]=\mathbf{0}
$$

Nonhomogeneous system of DEs

- How do you solve the equation

$$
\mathbf{x}^{\prime}(\mathbf{t})=A \mathbf{x}(\mathbf{t})+\mathbf{b} ?
$$

- Define the linear operator

$$
L[\mathbf{x}]=\mathbf{x}^{\prime}(\mathbf{t})-A \mathbf{x}(\mathbf{t})
$$

- The equation above can be written as

$$
L[\mathbf{x}]=\mathbf{b}
$$

- As for $2^{\text {nd }}$ order equations, solve homogeneous eqn first,

$$
L[\mathbf{x}]=\mathbf{0}
$$

- then Method of Undetermined Coefficients...

Nonhomogeneous system of DEs

- For the equation,

$$
\mathbf{x}^{\prime}(\mathbf{t})=A \mathbf{x}(\mathbf{t})+\mathbf{b}
$$

with ...

Nonhomogeneous system of DEs

- For the equation,

$$
\mathbf{x}^{\prime}(\mathbf{t})=A \mathbf{x}(\mathbf{t})+\mathbf{b}
$$

with ...

$$
A=\left(\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right) \quad \mathbf{b}=\binom{1}{2}
$$

Nonhomogeneous system of DEs

- For the equation,

$$
\mathbf{x}^{\prime}(\mathbf{t})=A \mathbf{x}(\mathbf{t})+\mathbf{b}
$$

with ...

$$
A=\left(\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right) \quad \mathbf{b}=\binom{1}{2} \quad \mathbf{x}_{\mathbf{p}}=\mathbf{v}
$$

Nonhomogeneous system of DEs

- For the equation,

$$
\mathbf{x}^{\prime}(\mathbf{t})=A \mathbf{x}(\mathbf{t})+\mathbf{b}
$$

with ...

$$
\begin{array}{rll}
A=\left(\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right) & \mathbf{b}=\binom{1}{2} & \mathbf{x}_{\mathbf{p}}=\mathbf{v} \\
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right) & \mathbf{b}=\binom{1}{2} &
\end{array}
$$

Nonhomogeneous system of DEs

- For the equation,

$$
\mathbf{x}^{\prime}(\mathbf{t})=A \mathbf{x}(\mathbf{t})+\mathbf{b}
$$

with ...

$$
\begin{array}{lll}
A=\left(\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right) & \mathbf{b}=\binom{1}{2} & \mathbf{x}_{\mathbf{p}}=\mathbf{v} \\
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right) & \mathbf{b}=\binom{1}{2} & \mathbf{x}_{\mathbf{p}}=\mathbf{v}
\end{array}
$$

Nonhomogeneous system of DEs

- For the equation,

$$
\mathbf{x}^{\prime}(\mathbf{t})=A \mathbf{x}(\mathbf{t})+\mathbf{b}
$$

with ...

$$
\begin{array}{lll}
A=\left(\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right) & \mathbf{b}=\binom{1}{2} & \mathbf{x}_{\mathbf{p}}=\mathbf{v} \\
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right) & \mathbf{b}=\binom{1}{2} & \mathbf{x}_{\mathbf{p}}=\mathbf{v}
\end{array}
$$

Nonhomogeneous system of DEs

- For the equation,

$$
\mathbf{x}^{\prime}(\mathbf{t})=A \mathbf{x}(\mathbf{t})+\mathbf{b}
$$

with ...

$$
\begin{array}{lll}
A=\left(\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right) & \mathbf{b}=\binom{1}{2} & \mathbf{x}_{\mathbf{p}}=\mathbf{v} \\
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right) & \mathbf{b}=\binom{1}{2} & \mathbf{x}_{\mathbf{p}}=\mathbf{v} \\
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right) & \mathbf{b}=\binom{2}{-1} &
\end{array}
$$

Nonhomogeneous system of DEs

- For the equation,

$$
\mathbf{x}^{\prime}(\mathbf{t})=A \mathbf{x}(\mathbf{t})+\mathbf{b}
$$

with ...

$$
\begin{array}{rll}
A=\left(\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right) & \mathbf{b}=\binom{1}{2} & \mathbf{x}_{\mathbf{p}}=\mathbf{v} \\
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right) & \mathbf{b}=\binom{1}{2} & \mathbf{x}_{\mathbf{p}}=\mathbf{v} \\
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right) & \mathbf{b}=\binom{2}{-1} & \mathbf{x}_{\mathbf{p}}=t \mathbf{v}+\mathbf{u}
\end{array}
$$

Nonhomogeneous system of DEs

- For the equation,

$$
\mathbf{x}^{\prime}(\mathbf{t})=A \mathbf{x}(\mathbf{t})+\mathbf{b}
$$

with ...

$$
\begin{array}{rlrl}
A & =\left(\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right) & \mathbf{b}=\binom{1}{2} & \mathbf{x}_{\mathbf{p}}=\mathbf{v} \\
A & =\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right) & \mathbf{b}=\binom{1}{2} & \mathbf{x}_{\mathbf{p}}=\mathbf{v} \\
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right) & \mathbf{b}=\binom{2}{-1} & \mathbf{x}_{\mathbf{p}}=t \mathbf{v}+\mathbf{u} \\
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right) & \mathbf{b}=\binom{1}{3} &
\end{array}
$$

Nonhomogeneous system of DEs

- For the equation,

$$
\mathbf{x}^{\prime}(\mathbf{t})=A \mathbf{x}(\mathbf{t})+\mathbf{b}
$$

with ...

$$
\begin{array}{rll}
A=\left(\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right) & \mathbf{b}=\binom{1}{2} & \mathbf{x}_{\mathbf{p}}=\mathbf{v} \\
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right) & \mathbf{b}=\binom{1}{2} & \mathbf{x}_{\mathbf{p}}=\mathbf{v} \\
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right) & \mathbf{b}=\binom{2}{-1} & \mathbf{x}_{\mathbf{p}}=t \mathbf{v}+\mathbf{u} \\
A=\left(\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right) & \mathbf{b}=\binom{1}{3} & \mathbf{x}_{\mathbf{p}}=t \mathbf{v}+\mathbf{u}
\end{array}
$$

Nonhomogeneous system of DEs

- For the equation,

$$
\mathbf{x}^{\prime}(\mathbf{t})=A \mathbf{x}(\mathbf{t})+\mathbf{b}
$$

what form should we guess for $\mathrm{x}_{\mathrm{p}}(\mathrm{t}$) (in the sense of MUC)?

Nonhomogeneous system of DEs

- For the equation,

$$
\mathbf{x}^{\prime}(\mathbf{t})=A \mathbf{x}(\mathbf{t})+\mathbf{b}
$$

what form should we guess for $\mathrm{x}_{\mathrm{p}}(\mathrm{t}$) (in the sense of MUC)?
(a) $\mathbf{x}_{\mathbf{p}}=\mathbf{v}$

Nonhomogeneous system of DEs

- For the equation,

$$
\mathbf{x}^{\prime}(\mathbf{t})=A \mathbf{x}(\mathbf{t})+\mathbf{b}
$$

what form should we guess for $\mathrm{x}_{\mathrm{p}}(\mathrm{t}$) (in the sense of MUC)?
(a) $\mathbf{X}_{\mathbf{p}}=\mathbf{V} \quad$-- works when \mathbf{b} is in the range of A (which is to say often so try this first, e.g. it always works when A is invertible).

Nonhomogeneous system of DEs

- For the equation,

$$
\mathbf{x}^{\prime}(\mathbf{t})=A \mathbf{x}(\mathbf{t})+\mathbf{b}
$$

what form should we guess for $\mathrm{x}_{\mathrm{p}}(\mathrm{t}$) (in the sense of MUC)?
(a) $\mathbf{X}_{\mathbf{p}}=\mathbf{V} \quad$-- works when \mathbf{b} is in the range of A (which is to say often so try this first, e.g. it always works when A is invertible).
(b) $\mathbf{x}_{\mathbf{p}}=t \mathbf{v}$

Nonhomogeneous system of DEs

- For the equation,

$$
\mathbf{x}^{\prime}(\mathbf{t})=A \mathbf{x}(\mathbf{t})+\mathbf{b}
$$

what form should we guess for $x_{p}(t)$ (in the sense of MUC)?
(a) $\mathbf{X}_{\mathbf{p}}=\mathbf{V} \quad$-- works when \mathbf{b} is in the range of A (which is to say often so try this first, e.g. it always works when A is invertible).
(b) $\mathbf{X}_{\mathbf{p}}=t \mathbf{V} \quad$-- works when (b) doesn't and \mathbf{b} happens to be in the nullspace of A which is a special case so safer to go straight from (b) to (d).

Nonhomogeneous system of DEs

- For the equation,

$$
\mathbf{x}^{\prime}(\mathbf{t})=A \mathbf{x}(\mathbf{t})+\mathbf{b}
$$

what form should we guess for $x_{p}(t)$ (in the sense of MUC)?
(a) $\mathbf{X}_{\mathbf{p}}=\mathbf{V} \quad--$ works when \mathbf{b} is in the range of A (which is to say often so try this first, e.g. it always works when A is invertible).
(b) $\mathbf{x}_{\mathbf{p}}=t \mathbf{V} \quad$-- works when (b) doesn't and \mathbf{b} happens to be in the nullspace of A which is a special case so safer to go straight from (b) to (d).
(c) $\mathbf{x}_{\mathbf{p}}=t \mathbf{v}+\mathbf{u}$

Nonhomogeneous system of DEs

- For the equation,

$$
\mathbf{x}^{\prime}(\mathbf{t})=A \mathbf{x}(\mathbf{t})+\mathbf{b}
$$

what form should we guess for $\mathrm{x}_{\mathrm{p}}(\mathrm{t}$) (in the sense of MUC)?
(a) $\mathbf{X}_{\mathbf{p}}=\mathbf{V} \quad-$ works when \mathbf{b} is in the range of A (which is to say often so try this first, e.g. it always works when A is invertible).
(b) $\mathbf{x}_{\mathbf{p}}=t \mathbf{V} \quad$-- works when (b) doesn't and \mathbf{b} happens to be in the nullspace of A which is a special case so safer to go straight from (b) to (d).
(c) $\mathbf{x}_{\mathbf{p}}=t \mathbf{v}+\mathbf{u} \quad-$ works when (b) and (c) don't with one exception - when the columns of A and solutions of $A v=0$ are not independent.

Nonhomogeneous system of DEs

- For the equation,

$$
\mathbf{x}^{\prime}(\mathbf{t})=A \mathbf{x}(\mathbf{t})+\mathbf{b}
$$

what form should we guess for $x_{p}(t)$ (in the sense of MUC)?
(a) $\mathbf{X}_{\mathbf{p}}=\mathbf{V} \quad$-- works when \mathbf{b} is in the range of A (which is to say often so try this first, e.g. it always works when A is invertible).
(b) $\mathbf{x}_{\mathbf{p}}=t \mathbf{V} \quad$-- works when (b) doesn't and \mathbf{b} happens to be in the nullspace of A which is a special case so safer to go straight from (b) to (d).
(c) $\mathbf{x}_{\mathbf{p}}=t \mathbf{v}+\mathbf{u} \quad$-- works when (b) and (c) don't with one exception - when the columns of A and solutions of $A v=0$ are not independent.
(d) $\mathbf{x}_{\mathbf{p}}=t^{2} \mathbf{v}+t \mathbf{u}+\mathbf{w}$

Nonhomogeneous system of DEs

- For the equation,

$$
\mathbf{x}^{\prime}(\mathbf{t})=A \mathbf{x}(\mathbf{t})+\mathbf{b}
$$

what form should we guess for $x_{p}(t)$ (in the sense of MUC)?
(a) $\mathbf{X}_{\mathbf{p}}=\mathbf{V} \quad-$ works when \mathbf{b} is in the range of A (which is to say often so try this first, e.g. it always works when A is invertible).
(b) $\mathbf{x}_{\mathbf{p}}=t \mathbf{V} \quad$-- works when (b) doesn't and \mathbf{b} happens to be in the nullspace of A which is a special case so safer to go straight from (b) to (d).
(c) $\mathbf{x}_{\mathbf{p}}=t \mathbf{v}+\mathbf{u} \quad$-- works when (b) and (c) don't with one exception - when the columns of A and solutions of $A v=0$ are not independent.
(d) $\mathbf{x}_{\mathbf{p}}=t^{2} \mathbf{v}+t \mathbf{u}+\mathbf{w}-$ works when (d) doesn't.

Nonhomogeneous system of DEs - example

- Salt water flows into a tank holding 10 L of water at a rate of $1 \mathrm{~L} / \mathrm{min}$ with a concentration of $200 \mathrm{~g} / \mathrm{L}$. The well-mixed solution flows from that tank into a tank holding 5 L through a pipe at $3 \mathrm{~L} / \mathrm{min}$. Another pipe takes the solution in the second tank back into the first at a rate of $2 \mathrm{~L} / \mathrm{min}$. Finally, solution drains out of the second tank at a rate of $1 \mathrm{~L} / \mathrm{min}$.
- Write down a system of equations in matrix form for the mass of salt in each tank.

Nonhomogeneous system of DEs - example

- Salt water flows into a tank holding 10 L of water at a rate of $1 \mathrm{~L} / \mathrm{min}$ with a concentration of $200 \mathrm{~g} / \mathrm{L}$. The well-mixed solution flows from that tank into a tank holding 5 L through a pipe at $3 \mathrm{~L} / \mathrm{min}$. Another pipe takes the solution in the second tank back into the first at a rate of $2 \mathrm{~L} / \mathrm{min}$. Finally, solution drains out of the second tank at a rate of $1 \mathrm{~L} / \mathrm{min}$.
- Write down a system of equations in matrix form for the mass of salt in each tank.

$$
\binom{m_{1}}{m_{2}}^{\prime}=\left(\begin{array}{cc}
-\frac{3}{10} & \frac{2}{5} \\
\frac{3}{10} & -\frac{3}{5}
\end{array}\right)\binom{m_{1}}{m_{2}}+\binom{200}{0}
$$

Nonhomogeneous case - example

- Salt water flows into a tank holding 10 L of water at a rate of $1 \mathrm{~L} / \mathrm{min}$ with a concentration of $200 \mathrm{~g} / \mathrm{L}$. The well-mixed solution flows from that tank into a tank holding 5 L through a pipe at $3 \mathrm{~L} / \mathrm{min}$. Another pipe takes the solution in the second tank back into the first at a rate of $2 \mathrm{~L} / \mathrm{min}$. Finally, solution drains out of the second tank at a rate of $1 \mathrm{~L} / \mathrm{min}$.

Nonhomogeneous case - example

- Salt water flows into a tank holding 10 L of water at a rate of $1 \mathrm{~L} / \mathrm{min}$ with a concentration of $200 \mathrm{~g} / \mathrm{L}$. The well-mixed solution flows from that tank into a tank holding 5 L through a pipe at $3 \mathrm{~L} / \mathrm{min}$. Another pipe takes the solution in the second tank back into the first at a rate of $2 \mathrm{~L} / \mathrm{min}$. Finally, solution drains out of the second tank at a rate of $1 \mathrm{~L} / \mathrm{min}$.

$$
\binom{m_{1}}{m_{2}}^{\prime}=\left(\begin{array}{cc}
-\frac{3}{10} & \frac{2}{5} \\
\frac{3}{10} & -\frac{3}{5}
\end{array}\right)\binom{m_{1}}{m_{2}}+\binom{200}{0}
$$

Nonhomogeneous case - example

- Salt water flows into a tank holding 10 L of water at a rate of $1 \mathrm{~L} / \mathrm{min}$ with a concentration of $200 \mathrm{~g} / \mathrm{L}$. The well-mixed solution flows from that tank into a tank holding 5 L through a pipe at $3 \mathrm{~L} / \mathrm{min}$. Another pipe takes the solution in the second tank back into the first at a rate of $2 \mathrm{~L} / \mathrm{min}$. Finally, solution drains out of the second tank at a rate of $1 \mathrm{~L} / \mathrm{min}$.

$$
\begin{aligned}
& \binom{m_{1}}{m_{2}}^{\prime}=\left(\begin{array}{cc}
-\frac{3}{10} & \frac{2}{5} \\
\frac{3}{10} & -\frac{3}{5}
\end{array}\right)\binom{m_{1}}{m_{2}}+\binom{200}{0} \\
& \quad \operatorname{tr} A=-\frac{9}{10}
\end{aligned}
$$

$$
\operatorname{det} A=\frac{9}{50}-\frac{6}{50}=\frac{3}{50} \quad 4 \operatorname{det} A=\frac{12}{50}
$$

Both evalues negative!

Nonhomogeneous case - example

$$
\binom{m_{1}}{m_{2}}^{\prime}=\left(\begin{array}{cc}
-\frac{3}{10} & \frac{2}{5} \\
\frac{3}{10} & -\frac{3}{5}
\end{array}\right)\binom{m_{1}}{m_{2}}+\binom{200}{0}
$$

negative!

Nonhomogeneous case - example

$$
\binom{m_{1}}{m_{2}}^{\prime}=\left(\begin{array}{cc}
-\frac{3}{10} & \frac{2}{5} \\
\frac{3}{10} & -\frac{3}{5}
\end{array}\right)\binom{m_{1}}{m_{2}}+\binom{200}{0}
$$

 negative!

$$
\mathbf{m}_{\mathbf{h}}(t)=C_{1} e^{\lambda_{1} t} \mathbf{v}_{\mathbf{1}}+C_{2} e^{\lambda_{2} t} \mathbf{v}_{\mathbf{2}} \quad\left(\lambda_{1,2}=-\frac{9}{20} \pm \frac{\sqrt{57}}{20}\right)
$$

Nonhomogeneous case - example

$$
\binom{m_{1}}{m_{2}}^{\prime}=\left(\begin{array}{cc}
-\frac{3}{10} & \frac{2}{5} \\
\frac{3}{10} & -\frac{3}{5}
\end{array}\right)\binom{m_{1}}{m_{2}}+\binom{200}{0}
$$

 negative!
 $\mathbf{m}_{\mathbf{p}}(t)=$

Nonhomogeneous case - example

$$
\begin{aligned}
& \binom{m_{1}}{m_{2}}^{\prime}=\left(\begin{array}{cc}
-\frac{3}{10} & \frac{2}{5} \\
\frac{3}{10} & -\frac{3}{5}
\end{array}\right)\binom{m_{1}}{m_{2}}+\binom{200}{0} \quad \underbrace{t r \mathbf{A}}_{\begin{array}{c}
\text { Bothe evalues } \\
\text { negative! }
\end{array}} \\
& \mathbf{m}_{\mathbf{h}}(t)=C_{1} e^{\lambda_{1} t} \mathbf{v}_{\mathbf{1}}+C_{2} e^{\lambda_{2} t} \mathbf{v}_{\mathbf{2}} \quad\left(\lambda_{1,2}=-\frac{9}{20} \pm \frac{\sqrt{57}}{20}\right) \\
& \mathbf{m}_{\mathbf{p}}(t)=\mathbf{w}=\binom{w_{1}}{w_{2}}
\end{aligned}
$$

Nonhomogeneous case - example

$$
\binom{m_{1}}{m_{2}}^{\prime}=\left(\begin{array}{cc}
-\frac{3}{10} & \frac{2}{5} \\
\frac{3}{10} & -\frac{3}{5}
\end{array}\right)\binom{m_{1}}{m_{2}}+\binom{200}{0}
$$

 negative!
$\mathbf{m}_{\mathbf{h}}(t)=C_{1} e^{\lambda_{1} t} \mathbf{v}_{\mathbf{1}}+C_{2} e^{\lambda_{2} t} \mathbf{v}_{\mathbf{2}} \quad\left(\lambda_{1,2}=-\frac{9}{20} \pm \frac{\sqrt{57}}{20}\right)$ $\mathbf{m}_{\mathbf{p}}(t)=\mathbf{w}=\binom{w_{1}}{w_{2}}$
$\mathbf{0}=A \mathbf{w}+\binom{200}{0}$

Nonhomogeneous case - example

$$
\binom{m_{1}}{m_{2}}^{\prime}=\left(\begin{array}{cc}
-\frac{3}{10} & \frac{2}{5} \\
\frac{3}{10} & -\frac{3}{5}
\end{array}\right)\binom{m_{1}}{m_{2}}+\binom{200}{0}
$$

 negative!

$$
\begin{aligned}
& \mathbf{m}_{\mathbf{h}}(t)=C_{1} e^{\lambda_{1} t} \mathbf{v}_{\mathbf{1}}+C_{2} e^{\lambda_{2} t} \mathbf{v}_{\mathbf{2}} \quad\left(\lambda_{1,2}=-\frac{9}{20} \pm \frac{\sqrt{57}}{20}\right) \\
& \mathbf{m}_{\mathbf{p}}(t)=\mathbf{w}=\binom{w_{1}}{w_{2}} \\
& \mathbf{0}=A \mathbf{w}+\binom{200}{0}
\end{aligned}
$$

Nonhomogeneous case - example

$$
\binom{m_{1}}{m_{2}}^{\prime}=\left(\begin{array}{cc}
-\frac{3}{10} & \frac{2}{5} \\
\frac{3}{10} & -\frac{3}{5}
\end{array}\right)\binom{m_{1}}{m_{2}}+\binom{200}{0}
$$

 negative!

$$
\begin{aligned}
& \mathbf{m}_{\mathbf{h}}(t)=C_{1} e^{\lambda_{1} t} \mathbf{v}_{\mathbf{1}}+C_{2} e^{\lambda_{2} t} \mathbf{v}_{\mathbf{2}} \quad\left(\lambda_{1,2}=-\frac{9}{20} \pm \frac{\sqrt{57}}{20}\right) \\
& \mathbf{m}_{\mathbf{p}}(t)=\mathbf{w}=\binom{w_{1}}{w_{2}} \\
& \mathbf{0}=A \mathbf{w}+\binom{200}{0} \rightarrow A \mathbf{w}=-\binom{200}{0}
\end{aligned}
$$

Nonhomogeneous case - example

$$
\binom{m_{1}}{m_{2}}^{\prime}=\left(\begin{array}{cc}
-\frac{3}{10} & \frac{2}{5} \\
\frac{3}{10} & -\frac{3}{5}
\end{array}\right)\binom{m_{1}}{m_{2}}+\binom{200}{0}
$$

 negative!

$$
\begin{aligned}
& \mathbf{m}_{\mathbf{h}}(t)=C_{1} e^{\lambda_{1} t} \mathbf{v}_{\mathbf{1}}+C_{2} e^{\lambda_{2} t} \mathbf{v}_{\mathbf{2}} \quad\left(\lambda_{1,2}=-\frac{9}{20} \pm \frac{\sqrt{57}}{20}\right) \\
& \mathbf{m}_{\mathbf{p}}(t)=\mathbf{w}=\binom{w_{1}}{w_{2}} \\
& \mathbf{0}=A \mathbf{w}+\binom{200}{0} \rightarrow A \mathbf{w}=-\binom{200}{0} \rightarrow \mathbf{w}=\binom{2000}{1000}
\end{aligned}
$$

Nonhomogeneous case - example

$$
\binom{m_{1}}{m_{2}}^{\prime}=\left(\begin{array}{cc}
-\frac{3}{10} & \frac{2}{5} \\
\frac{3}{10} & -\frac{3}{5}
\end{array}\right)\binom{m_{1}}{m_{2}}+\binom{200}{0}
$$

 negative!

$$
\begin{aligned}
& \mathbf{m}_{\mathbf{h}}(t)=C_{1} e^{\lambda_{1} t} \mathbf{v}_{\mathbf{1}}+C_{2} e^{\lambda_{2} t} \mathbf{v}_{\mathbf{2}} \quad\left(\lambda_{1,2}=-\frac{9}{20} \pm \frac{\sqrt{57}}{20}\right) \\
& \mathbf{m}_{\mathbf{p}}(t)=\mathbf{w}=\binom{w_{1}}{w_{2}} \\
& \mathbf{0}=A \mathbf{w}+\binom{200}{0} \rightarrow A \mathbf{w}=-\binom{200}{0} \xrightarrow{\rightarrow} \mathbf{w}=\binom{2000}{1000}
\end{aligned}
$$

$$
\mathbf{m}(t)=C_{1} e^{\lambda_{1} t} \mathbf{v}_{\mathbf{1}}+C_{2} e^{\lambda_{2} t} \mathbf{v}_{\mathbf{2}}+\binom{2000}{1000}
$$

Nonhomogeneous case - example

- A "Method of undetermined coefficients" similar to what we saw for second order equations can be used for systems.
- For this course, l'll only test you on constant nonhomogeneous terms (like the previous example).

