Today

e Midterm 1 postponed to Feb 10 (not updated on calendar yet).

e Solving a second order linear homogeneous equation with constant
coefficients

e complex roots to the characteristic equation,
e repeated roots to the characteristic equation (Reduction of Order).
e Connections to matrix algebra.

e Solving a second order linear nonhomogeneous equation.
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Complex number review

e Geometric interpretation of complex numbers

eeg. a-+ b

a‘l‘b(
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Complex number review

e Geometric interpretation of complex numbers

eeg. a-+ bt a = M cos0
b= Msin6
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Complex number review

e Geometric interpretation of complex numbers

eeg. a-+ b

a‘l‘b(

a = M cos@
b= Msinb
M = /a2 + b2

b
¢ = arctan (—)
a
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Complex number review

e Geometric interpretation of complex numbers

eeg. a-+ bt a = M cos0
b= Msinb
\ _ 2 2
Q'l‘bl M \/CL + b
b
0 = arctan (—)
a

a4+ bt = M(cosf + isin )
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Complex number review

e Geometric interpretation of complex numbers

eeg. a-+ b

a‘l‘b(

b

>

Re

a = M cos@
b= Msinb
M = /a2 + b2

b
¢ = arctan (—)
a

a4+ bt = M(cosf + isin )

0 is sometimes called the
argument or phase of a + bz.
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Complex number review
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Complex number review

e Toward Euler’s formula
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Complex number review

e Toward Euler’s formula

e Taylor series - recall that a function can be represented as

() = Flao) + 7 (o) @ — o) + Lo
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Complex number review

e Toward Euler’s formula

e Taylor series - recall that a function can be represented as

/ f,/(xO) ,
f(m):f(CUO)_Ff(CUQ)(ZC—ZE()) | o1 (x—xo) + ...
2zt
e What function has Taylor series 1 > | m

(A) cos X (C) e*

(B) sin x (D) In x
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e Toward Euler’s formula

e Taylor series - recall that a function can be represented as

/ f,/(xO) ,
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Complex number review

e Toward Euler’s formula
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Complex number review

e Toward Euler’s formula

e Taylor series - recall that a function can be represented as

/ f,/(x()) 2
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e What function has Taylor series 1 + & o1 | 3 ..

(A) cos X (C) e*
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Complex number review

e Toward Euler’s formula

e Taylor series - recall that a function can be represented as

/ f,/(x()) 2
f(m):f(CUO)_Ff(CUQ)(ZC—ZE()) | o1 (x—xo) + ...
L T
e What function has Taylor series 1 + & o1 | 3 ..

(A) cosx  W(C) e*

(B) sin x (D) In x
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Complex number review

e Use Taylor series to rewrite cosd + ¢2sin 0.

L

1 — | —
SIN T = X a1 | S cosx =1
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Complex number review

e Use Taylor series to rewrite cosd + ¢2sin 0.

cosf +1sin6

L

1 — | —
SIN T = X a1 | S cosx =1
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Complex number review

e Use Taylor series to rewrite cosd + ¢2sin 0.

. 92 (94

cosf +1sinfd =1 SRR
L xS | 0 . 2 xt
T N LT
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Complex number review

e Use Taylor series to rewrite cosd + ¢2sin 0.

o 92 (94 | (93 (95

cost +1sinf =1 SRR SR (9 TR
3 P 2 xt

SIN T = X 31 | o cosx = 1 o1 | T
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Complex number review

e Use Taylor series to rewrite cosd + ¢2sin 0.

o 92 (94 | (93 (95

cos +1sinf =1 TR 41 (9 TR
, 02 03 04
:1—|—26’—|—(—1)2! - ( 1)23! | (—1)24!
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Complex number review

e Use Taylor series to rewrite cosd + ¢2sin 0.

o 92 (94 | (93 (95

cos +1sinf =1 TR 41 (9 TR
, 02 03 04
:1+_zg+(—1)2! - ( 1)23! :(—1)24!
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Complex number review

e Use Taylor series to rewrite cosd + ¢2sin 0.

o 6)2 (94 | 6)5
(_Dﬁ+281n9 :]. 2' | 4' —|_7/ (9 | 5'
| (92 ,6’3 294
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Complex number review

e Use Taylor series to rewrite cosd + ¢2sin 0.

o 92 (94 | (95
cosf +1sinf =1 SRR ) (9 -
, 02 67 i
: :1+_zg+(—1)2! - ( 1)@3! (—1)24!
—1 =7
(> 03 0!
o : 9 . -3 4
T A T T
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Complex number review

e Use Taylor series to rewrite cosd + ¢2sin 0.

o 92 (94 | (93 (95
cost +1sinf =1 SRR SR (9 TR
| (92 _6’3 294
— 1"‘}9"'(_1) o7 (—1)3 T (—1) i
0- 03 04
o : 9 . -3 A |
=140 + 1 o1 ) 3 ) T

- (10)% (z'é)3 (¢.9)4

2! 3!

4]
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Complex number review

e Use Taylor series to rewrite cosd + ¢2sin 0.

. 0% 0% , 0> 0°
cosf +isinf =1 SRR e g (9 T >
. 0~ 67 , 0%
= 1+ + (—1) 75 + (—D)igy + (=1)° 7 -
0° 0> 0*
_ Y -2 | -3 -4 |

- (10)% (z'é)3 (¢.9)4

2! 3!

4]

Thursday, January 22, 2015



Complex number review

e Use Taylor series to rewrite cosd + ¢2sin 0.

cosf +1sin6
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Complex number review

e Use Taylor series to rewrite cosd + ¢2sin 0.

Euler’s formula:

cos @ + isinf = e*?
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Complex number review

e Geometric interpretation of complex numbers

eeg. a+ bt a = M cos 0
b= Msinb
\ _ 2 2
Q'l‘bl M \/CL +b
b
¢ = arctan (—)
a

a+ bi = M(cosf + isin )
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Complex number review

e Geometric interpretation of complex numbers

eeg. a+ bt a = M cos 0
b= Msin6

a b M= Va+¥

¢ = arctan (é>
b a

a+ bi = M(cosf + isin )

~ a+bi = Me"?
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Complex number review

e Geometric interpretation of complex numbers

eeg. a+ bt a = M cos 0
b= Msin6

a b M= Va+¥

¢ = arctan (é>
b a

a+ bi = M(cosf + isin )

a4+ bi = Me'

QC (Polar form makes multiplication
much cleaner)

6
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Complex roots (Section 3.3)

e For the general case, ay” + by/ + cy = 0, by assuming y(t) — et
we get the characteristic equation:

ar® +br4+c¢=0
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Complex roots (Section 3.3)

e For the general case, ay” + by/ + cy = 0, by assuming y(t) — et

we get the characteristic equation:
ar® +br4+c¢=0
e When b?- 4ac < 0, we get complex roots:
—b + \/b2 — 4ac
2a

ry 2 —
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Complex roots (Section 3.3)

e For the general case, ay” + by/ + cy = 0, by assuming y(t) — et
we get the characteristic equation:

ar® +br4+c¢=0

e When b?- 4ac < 0, we get complex roots:

- —b + \/b2—4ac

ry 2 —

— b+ +v/—1V4ac — b2
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Complex roots (Section 3.3)

e For the general case, ay” + by/ + cy = 0, by assuming y(t) — et
we get the characteristic equation:

ar® +br4+c¢=0

e When b?- 4ac < 0, we get complex roots:

—b + \/b2 — 4ac
1,2 = 2a
b= vV —1v/4ac — b2
B 2a
—b+ iv/4dac — b2

2a
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Complex roots (Section 3.3)

e For the general case, ay” + by/ + cy = 0, by assuming y(t) — et
we get the characteristic equation:

ar® +br4+c¢=0

e When b?- 4ac < 0, we get complex roots:

—b + \/b2 — 4ac
1,2 = 2a
b= vV —1v/4ac — b2
B 2a

—b+ iv/4dac — b2 _ —b Vidac — b
2a - 2a 2a
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Complex roots (Section 3.3)

e For the general case, ay” + by/ + cy = 0, by assuming y(t) — et
we get the characteristic equation:

ar® +br4+c¢=0

e When b?- 4ac < 0, we get complex roots:

—b + \/b2 — 4ac
ri,2 = 2
b= vV —1v4ac — b?
N 2a
- b= iv/dac — b2 _ —b Vidac — b
N 2a T 2 2a :

|
Q
H

Bi
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Complex roots (Section 3.3)

e Complex roots to the characteristic equation mean complex valued
solution to the ODE:
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Complex roots (Section 3.3)

e Complex roots to the characteristic equation mean complex valued
solution to the ODE:

y1(t) = platpi)t
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Complex roots (Section 3.3)

e Complex roots to the characteristic equation mean complex valued
solution to the ODE:

y1 () = ela ot

eoztezﬁt
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Complex roots (Section 3.3)

e Complex roots to the characteristic equation mean complex valued
solution to the ODE:

y1(t) = platpi)t

_ eoztezﬁt

= e (cos(Bt) + isin(Bt))
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Complex roots (Section 3.3)

e Complex roots to the characteristic equation mean complex valued
solution to the ODE:

y1(t) = platpi)t

_ eoztezﬁt

= e (cos(Bt) + isin(Bt))

ya(t) = el 000

Thursday, January 22, 2015



Complex roots (Section 3.3)

e Complex roots to the characteristic equation mean complex valued
solution to the ODE:

y1(t) = platpi)t

_ eoztezﬁt

= e (cos(Bt) + isin(Bt))

ya(t) = el 000

_ eozte—zﬁt
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Complex roots (Section 3.3)

e Complex roots to the characteristic equation mean complex valued
solution to the ODE:

y1(t) = platpi)t

_ eoztezﬁt

= e (cos(Bt) + isin(Bt))

ya(t) = el

_ eozte—zﬁt

= e*(cos(—pBt) + isin(—pFt))
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Complex roots (Section 3.3)

e Complex roots to the characteristic equation mean complex valued
solution to the ODE:

y1(t) = platpi)t

_ eoztezﬁt

= e (cos(Bt) + isin(Bt))

ya(t) = el 000

_ eozte—zﬁt

*(cos(—Bt) + isin(—03t))
eat(cos(ﬂt) — 1sin(Ft))

Thursday, January 22, 2015



Complex roots (Section 3.3)

e Complex roots to the characteristic equation mean complex valued
solution to the ODE:

y1(t) = e**(cos(Bt) + isin(Ht))
y2(t) = e*(cos(Bt) — isin(Bt))
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Complex roots (Section 3.3)

e Complex roots to the characteristic equation mean complex valued

solution to the ODE:
y1(t) = e* (cos(Bt) + isin(Ht))

y2(t) = e*(cos(Bt) — isin(Bt))

* Instead of using these to form the general solution, let’s use them to find
two real valued solutions:
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Complex roots (Section 3.3)

e Complex roots to the characteristic equation mean complex valued

solution to the ODE:
y1(t) = e* (cos(Bt) + isin(Ht))

y2(t) = e*(cos(Bt) — isin(Bt))

* Instead of using these to form the general solution, let’s use them to find
two real valued solutions:

1 1

SU(t) + Sua(t) = e cos(3)
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Complex roots (Section 3.3)

e Complex roots to the characteristic equation mean complex valued
solution to the ODE:

y1(t) = e**(cos(Bt) + isin(Ht))
y2(t) = e*(cos(Bt) — isin(Bt))

* Instead of using these to form the general solution, let’s use them to find
two real valued solutions:

1

oY1 (t) +

1

1
S (t) = Soya(t) = e sin(

;yg(t) _ ot cos(Bt)
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Complex roots (Section 3.3)

e Complex roots to the characteristic equation mean complex valued
solution to the ODE:

y1(t) = e**(cos(Bt) + isin(Ht))
y2(t) = e*(cos(Bt) — isin(Bt))

* Instead of using these to form the general solution, let’s use them to find
two real valued solutions:

Sur(6) + ua(t) = e cos(3t
~u1(t) = -0 (t) = e sin(5t)

e General solution:

y(t) = Cre® cos(t) + Coe® sin(5t)
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Complex roots (Section 3.3)

® To be sure this is a general solution, we must check the Wronskian:

W (e cos(Bt), e sin(Bt))(t) =

(for you to fill in later - is it non-zero?)

Recall: W (y1,y2)(t) = y1(t)ya(t) — v (t)y2()

Thursday, January 22, 2015



Complex roots (Section 3.3)

e Example: Find the (real valued) general solution to the equation
// /
Yy + 2y +oy =0

e Step 1: Assume y(t) — et , plug this into the equation and find
values of r that make it work.

(A) ri=1+2i,ro=1 -2

D) m=2+4i,rp=2-4ij
B) ri=-1+2i,ro=-1-2i

(E) m=-2+4i,ro=-2-4j
(C) ri=1-2i,ro=-1+2i

11
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Complex roots (Section 3.3)

e Example: Find the (real valued) general solution to the equation
// /
Yy + 2y +oy =0

e Step 1: Assume y(t) — et , plug this into the equation and find
values of r that make it work.

(A) ri=1+2i,ro=1 -2
D) m=2+4i,rp=2-4ij
¥ B) ri=-1+2i,rp=-1-2i
(E) m=-2+4i,ro=-2-4j
C) i=1-2i,ro=-1+ 2i

11
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Complex roots (Section 3.3)

e Example: Find the (real valued) general solution to the equation
// /
Y+ 2y + oy =0

e Step 2: Real part of r goes in the exponent, imaginary part goes in the
trig functions.

B y(t) = e *(C; cos(2t) + Cy sin(2t))
B y(t) = CreI 2 4 Cyel 1201
€) y(t) = C1cos(2t) + Cysin(2t) + Cze™*

D) y(t) = C cos(2t) + Cy sin(2t)
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Complex roots (Section 3.3)

e Example: Find the (real valued) general solution to the equation
// /
Y+ 2y + oy =0

e Step 2: Real part of r goes in the exponent, imaginary part goes in the
trig functions.

% A y(t) = e (C;cos(2t) + Cysin(2t))
(B) y(t) _ Cle(—1—|—2i)t 4 026(—1—2i)t
€) y(t) = C1cos(2t) + Cysin(2t) + Cze™*

D) y(t) = C cos(2t) + Cy sin(2t)
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Complex roots (Section 3.3)

¢ Example: Find the solution to the IVP

y' +2y +5y =0, y(0) =1, y'(0) =0

e General solution:  y(t) = e~ *(C cos(2t) + Cy sin(2t))

A y(t) = e " (2cos(2t) + sin(2t))
B) y(t) =e " (cos(Qt) — %sin(%))

C) y(t) = %e_t(Z cos(2t) — sin(2t))

D) y(t) = %e_t(Z cos(2t) + sin(2t))
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Complex roots (Section 3.3)

¢ Example: Find the solution to the IVP

y' +2y +5y =0, y(0) =1, y'(0) =0

e General solution:  y(t) = e~ *(C cos(2t) + Cy sin(2t))

A y(t) = e " (2cos(2t) + sin(2t))
B) y(t) =e " (cos(Qt) — %sin(%))

C) y(t) = %e_t(Z cos(2t) — sin(2t))

W D) y(t) = %e_t(Z cos(2t) + sin(2t))
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Repeated roots (Section 3.4)

e For the general case, ay”’ + by’ + cy = 0, by assuming y(t) = e""

we get the characteristic equation:

ar® +br +c=0
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Repeated roots (Section 3.4)

e For the general case, ay”’ + by’ + cy = 0, by assuming y(t) = e""

we get the characteristic equation:
ar® +br +c=0

® There are three cases.
i. Two distinct real roots: b°- 4ac > 0. (r1#rz)
ii.A repeated real root: b®- 4ac = 0.

iii. Two complex roots: b?- 4ac < 0.
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Repeated roots (Section 3.4)

e For the general case, ay”’ + by’ + cy = 0, by assuming y(t) = e""

we get the characteristic equation:
ar® +br +c=0

* There are three cases.
i. Two distinct real roots: b°- 4ac > 0. (r1#rz)
ii.A repeated real root: b®- 4ac = 0.
iii. Two complex roots: b?- 4ac < 0.

e For case ii (r1=rz2=r), we need another independent solution!
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Repeated roots (Section 3.4)

e For the general case, ay”’ + by’ + cy = 0, by assuming y(t) = e""

we get the characteristic equation:
ar® +br +c=0

® There are three cases.
i. Two distinct real roots: b°- 4ac > 0. (r1#rz)
ii.A repeated real root: b®- 4ac = 0.
iii. Two complex roots: b?- 4ac < 0.
e For case ii (r1=rz2=r), we need another independent solution!

e Reduction of order - a method for guessing another solution.
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Reduction of order

* You have one solution Y1 (t) and you want to find another independent
one, Y2 (t) .
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Reduction of order

* You have one solution Y1 (t) and you want to find another independent
one, Y2 (t) .

e Guess that ¥2(f) = v(?)y1(¢) for some as yet unknown v(). If you
can find U(t) this way, great. If not, gotta try something else.
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Reduction of order

* You have one solution Y1 (t) and you want to find another independent
one, Y2 (t) .

e Guess that ¥2(f) = v(?)y1(¢) for some as yet unknown v(). If you
can find U(t) this way, great. If not, gotta try something else.

e Example - ¥’ + 4y’ + 4y = 0. Only one root to the characteristic
equation, r=-2, so we only get one solution that way: /1 (t) —e
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Reduction of order

* You have one solution Y1 (t) and you want to find another independent

one, Y2 (t) .

e Guess that ¥2(f) = v(?)y1(¢) for some as yet unknown v(). If you
can find U(t) this way, great. If not, gotta try something else.

e Example - ¥’ + 4y’ + 4y = 0. Only one root to the characteristic
equation, r=-2, so we only get one solution that way: /1 (t) —e

e Use Reduction of order to find a second solution.

y2(t) = v(t)e
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Reduction of order

* You have one solution Y1 (t) and you want to find another independent
one, Y2 (t) .

e Guess that ¥2(f) = v(?)y1(¢) for some as yet unknown v(). If you
can find U(t) this way, great. If not, gotta try something else.

e Example - ¥’ + 4y’ + 4y = 0. Only one root to the characteristic

equation, r=-2, so we only get one solution that way: /1 (t) —e

e Use Reduction of order to find a second solution.

y2(t) = v(t)e

e Heuristic explanation for exponential solutions and Reduction of order.

Thursday, January 22, 2015



Reduction of order

For the equation y” + 4y/ + 4y = 0, say you know Y1 (t) —e
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Reduction of order

For the equation y” + 4y/ + 4y = 0, say you know Y1 (t) —e

Guess U2(t) = v(t)e *".
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Reduction of order

For the equation y” + 4y/ + 4y = 0, say you know Y1 (t) —e

Guess U2(t) = v(t)e *".

J
45 (t) = 4v(t)e
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Reduction of order

For the equation y” + 4y/ + 4y = 0, say you know Y1 (t) —e

Guess Y2(t) =v(t)e 2.  yh(t) = v/ (t)e " — 2u(t)e

J
45 (t) = 4v(t)e
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Reduction of order

For the equation y” + 4y/ + 4y = 0, say you know Y1 (t) —e

Guess Y2(t) =v(t)e 2.  yh(t) = v/ (t)e " — 2u(t)e

v I
4ys(t) = 4’0(t)€_2t 4y (t) = 41/(15)6_275 _ 8v(t)e_2t
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Reduction of order

For the equation y” + 4y/ + 4y = 0, say you know Y1 (t) —e

Guess Y2(t) =v(t)e 2.  yh(t) = v/ (t)e " — 2u(t)e

v I
4ys(t) = 4’0(t)€_2t 4y (t) = 41/(15)6_275 _ 8v(t)e_2t

yy (t) = v (t)e 2t — 20/ (t)e " — 20/ (t)e * 4 4v(t)e
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Reduction of order

For the equation y” + 4y/ + 4y = 0, say you know Y1 (t) —e

Guess Y2(t) =v(t)e 2.  yh(t) = v/ (t)e " — 2u(t)e

v I
4ys(t) = 4’0(t)€_2t 4y (t) = 41/(15)6_275 _ 8v(t)e_2t

yy (t) = v (t)e 2t — 20/ (t)e " — 20/ (t)e * 4 4v(t)e

N
vy (t) = 0" (t)e " — 40" (t)e ™ + dv(t)e
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Reduction of order

For the equation y” + 4y/ + 4y = 0, say you know Y1 (t) —e

Guess Y2(t) =v(t)e 2.  yh(t) = v/ (t)e " — 2u(t)e

v I
4ys(t) = 4’0(t)€_2t 4y (t) = 41/(15)6_275 _ 8v(t)e_2t

yy (t) = v (t)e 2t — 20/ (t)e " — 20/ (t)e * 4 4v(t)e

vy (t) = 0" (t)e " — 40" (t)e ™ + dv(t)e

Yo + Ays + dys =
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Reduction of order

For the equation y” + 4y/ + 4y = 0, say you know Y1 (t) =€
Guess Y2(t) = v(t)e_275 yh(t) = v/ (t)e * — 2u(t)e
|
In(0) = B 150) = 1) — Sulpe

yy (t) = v (t)e 2t — 20/ (t)e " — 20/ (t)e * 4 4v(t)e

N
() = " (B)e2 — 40/ (e + dupe

Yo + Ays + dys =
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Reduction of order

For the equation y” + 4y/ + 4y = 0, say you know Y1 (t) =€
Guess Y2(t) = v(t)e_275 yh(t) = v/ (t)e * — 2u(t)e
|
In(0) = L 150) = T — Sulpe

yy (t) = v (t)e 2t — 20/ (t)e " — 20/ (t)e * 4 4v(t)e

N
i () = " (1) — Tot)e > + dupe ™

Yo + Ays + dys =
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Reduction of order

For the equation y” + 4y/ + 4y = 0, say you know Y1 (t) =€
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Reduction of order
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Reduction of order

For the equation y” + 4y/ + 4y = 0, say you know Y1 (t) —e

Guess 2 (t) = v(t)e (where v(t) = Cit + Cy ).
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Reduction of order

For the equation y” + 4y/ + 4y = 0, say you know Y1 (t) —e

Guess 2 (t) = v(t)e (where v(t) = Cit + Cy ).
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Reduction of order

For the equation y” + 4y/ + 4y = 0, say you know Y1 (t) —e

Guess 2 (t) = v(t)e (where v(t) = Cit + Cy ).
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Reduction of order

For the equation y” + 4y/ + 4y = 0, say you know Y1 (t) —e

Guess 2 (t) = v(t)e (where v(t) = Cit + Cy ).
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Reduction of order

For the equation y” + 4y/ + 4y = 0, say you know Y1 (t) —e

Guess 2 (t) = v(t)e (where v(t) = Cit + Cy ).
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Thursday, January 22, 2015



Reduction of order

For the equation y” + 4y/ + 4y = 0, say you know Y1 (t) —e

Guess 2 (t) = v(t)e (where v(t) = Cit + Cy ).
= (Ci1t + Cy)e 2

)= D

Is this the general solution? Calculate the Wronskian:
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Reduction of order

For the equation y” + 4y/ + 4y = 0, say you know Y1 (t) —e

Guess 2 (t) = v(t)e (where v(t) = Cit + Cy ).
= (Cit 4+ Cy)e 2

)= D

Is this the general solution? Calculate the Wronskian:
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Reduction of order

For the equation y” + 4y/ + 4y = 0, say you know Y1 (t) —e

Guess 2 (t) = v(t)e (where v(t) = Cit + Cy ).
= (Cit 4+ Cy)e 2

)= D

Is this the general solution? Calculate the Wronskian:

W(e 2, te™2)(t) = ya(t)yh(t) — ¥} (B)y2(t) = e

Thursday, January 22, 2015



Reduction of order

For the equation y” + 4y/ + 4y = 0, say you know Y1 (t) —e

Guess 2 (t) = v(t)e (where v(t) = Cit + Cy ).
= (Cit 4+ Cy)e 2

)= D

Is this the general solution? Calculate the Wronskian:

W(e ", te ?")(t) = y1(t)ys(t) — y1(t)y2(t) = e #£0
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Reduction of order

For the equation y” + 4y/ + 4y = 0, say you know Y1 (t) —e

Guess 2 (t) = v(t)e (where v(t) = Cit + Cy ).
= (Cit 4+ Cy)e 2

)= D

Is this the general solution? Calculate the Wronskian:

W(e ", te ?")(t) = y1(t)ys(t) — y1(t)y2(t) = e #£0

So yes!
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Summary (3.1-3.4)

e For the general case, ay”’ + by’ + cy = 0, by assuming y(t) = e""

we get the characteristic equation:

ar® +br +c=0
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Summary (3.1-3.4)

e For the general case, ay”’ + by’ + cy = 0, by assuming y(t) = e""

we get the characteristic equation:
ar® +br +c=0

e There are three cases.

i. Two distinct real roots: b?- 4ac > 0. (r1, r2)
y(t) — Clerlt 0267“275

ii.A repeated real root: b°-4ac =0. (r)
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Summary (3.1-3.4)

e For the general case, ay”’ + by’ + cy = 0, by assuming y(t) = e""

we get the characteristic equation:
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e There are three cases.

i. Two distinct real roots: b?- 4ac > 0. (r1, r2)
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Summary (3.1-3.4)

e For the general case, ay’’ + by’ + cy = 0, by assuming y(t) = e

we get the characteristic equation:

ar® +br +c=0

e There are three cases.

i. Two distinct real roots: b?- 4ac > 0. (r1, r2)

y(t) — Clerlt

0267“275

ii.A repeated real root: b°-4ac =0. (r)

y(t) = Cre™ + Cote™

iii. Two complex roots: b?- 4ac < 0. (ri2= c=if)
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Summary (3.1-3.4)

e For the general case, ay”’ + by’ + cy = 0, by assuming y(t) = e""

we get the characteristic equation:
ar® +br +c=0

e There are three cases.

i. Two distinct real roots: b?- 4ac > 0. (r1, r2)
y(t) = Cre™t 4 Cqe™?
ii.A repeated real root: b°-4ac =0. (r)
y(t) = Cre™ + Cote™
iii. Two complex roots: b?-4ac < 0. (ri2= a+if)

y = e (Cy cos(Bt) 4+ Cs sin(Gt))
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Second order, linear, constant coeff, homogeneous

e Find the general solution to the equation

y"' — 6y + 8y =0
A) y(t) = Cre ?t + Coe™*
B) y(t) = Cre** + Cye™
©) y(t) = e**(C cos(4t) + Co sin(4t))
D) y(t) = e **(C; cos(4t) + Cy sin(4t))

E) y(t) = Cre® + Cote™
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e Find the general solution to the equation

y"' — 6y + 8y =0
A) y(t) = Cre ?t + Coe™*
% B) y(t) = Cie?t + Core™
€) y(t) = e**(C; cos(4t) + Oy sin(4t))
D) y(t) = e **(C; cos(4t) + Cy sin(4t))
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Second order, linear, constant coeff, homogeneous

e Find the general solution to the equation

y' —6y +9y =0
A y(t) = Cre™
B) y(t) = Cie’" + Cye’
©) y(t) = Cre’" + Cre™!
D) y(t) = Cre’t + Cote™

(E) y(t) — 0163t -+ C’Qv(t)e3t
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Second order, linear, constant coeff, homogeneous

e Find the general solution to the equation

y"' — 6y +9y =0
A y(t) = Cre™
B) y(t) = Cie’t 4 Coe
©) y(t) = Cie’t + Cre™"
% D) y(t) = Cre’ 4 Cyte™

(E) y(t) — 0163t -+ C’Qv(t)e3t
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Second order, linear, constant coeff, homogeneous

e Find the general solution to the equation

y’ — 6y + 10y =0
A y(t) = Cre’t + Oye
®) y(t) = Cre® + Coe™"
(€) y(t) = C4 cos(3t) + Cs sin(3t)
D) y(t) = e'(C cos(3t) + Cy sin(3t))

E) y(t) = e**(C; cos(t) + Cysin(t))
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Second order, linear, constant coeff, homogeneous

e Find the general solution to the equation

y’ — 6y + 10y =0
A y(t) = Cre’t + Oye
®) y(t) = Cre® + Coe™"
(€) y(t) = C4 cos(3t) + Cs sin(3t)
D) y(t) = e'(C cos(3t) + Cy sin(3t))

Y E) y(t) = e**(C cos(t) + Cysin(t))
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Second order, linear, constant coeff, nonhomogeneous (3.5)

e Our next goal is to figure out how to find solutions to nonhomogeneous
equations like this one:

y" — 6y’ + 8y = sin(2t)

e But first, a bit more on the connections between matrix algebra and
differential equations . . .
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Some connections to linear (matrix) algebra

e An mxn matrix is a gizmo that takes an n-vector and returns an m-
vector:

7= AT
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Some connections to linear (matrix) algebra

e An mxn matrix is a gizmo that takes an n-vector and returns an m-
vector: _ _

y = Ax

e |t is called a linear operator because it has the following properties:

A(cr) = cAx
AT +7) = AT + Ay
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Some connections to linear (matrix) algebra

e An mxn matrix is a gizmo that takes an n-vector and returns an m-
vector:

7 = AT

e |t is called a linear operator because it has the following properties:
A(cr) = cAx

AT +7) = AT + Ay

e Not all operators work on vectors. Derivative operators take a function
and return a new function. For example,

B d?y 2dy
- dt? dt

z = Lly
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Some connections to linear (matrix) algebra

e An mxn matrix is a gizmo that takes an n-vector and returns an m-
vector: 7 = A7
e |t is called a linear operator because it has the following properties:
A(cr) = cAx
AT +7) = AT + Ay
e Not all operators work on vectors. Derivative operators take a function
and return a new function. For example,

d*y  _dy
z = Lly| = 2 |
e This one is linear because Note: y, z are functions
Licy| = cL [y] of t and c is a constant.

Lly + 2| = Lly| + L2
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Some connections to linear (matrix) algebra

e A homogeneous matrix equation has the form

Az =0
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Some connections to linear (matrix) algebra
e A homogeneous matrix equation has the form
AT =0

* A non-homogeneous matrix equation has the form

AT =D
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Some connections to linear (matrix) algebra

e A homogeneous matrix equation has the form
AT =0

* A non-homogeneous matrix equation has the form
AT =b

e A homogeneous differential equation has the form

Lly| =0
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Some connections to linear (matrix) algebra

e A homogeneous matrix equation has the form
AT =0

* A non-homogeneous matrix equation has the form
AT =

e A homogeneous differential equation has the form
Ly =0

* A non-homogeneous differential equation has the form

Lly] = g(t)
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Some connections to linear (matrix) algebra

Systems of equations written in operator notation.

Equation in

System of equations Operator definition operator notation
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Some connections to linear (matrix) algebra

Systems of equations written in operator notation.

Equation in

System of equations Operator definition operator notation

1+ 2x0 =4 _ <1 2> ($1>
Ax =
3331 T 4332 — 7 3 4 iy
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Some connections to linear (matrix) algebra

Systems of equations written in operator notation.

Equation in
operator notation

+ 229 = 4
Tl e () ()
3581 T 4332 =7 3 4 L9 7

System of equations Operator definition
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Some connections to linear (matrix) algebra

Systems of equations written in operator notation.

Equation in
operator notation

+ 229 = 4
Tl e () ()
3581 T 4332 =7 3 4 L9 7

Some differential equations we’ve seen, written in operator notation.

System of equations Operator definition

Equation in

Differential equation Operator definition .
operator notation
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Some connections to linear (matrix) algebra

Systems of equations written in operator notation.

Equation in
operator notation

+ 229 = 4
Tl e () ()
3581 T 4332 =7 3 4 L9 7

Some differential equations we’ve seen, written in operator notation.

System of equations Operator definition

Equation in

Differential equation Operator definition .
operator notation

dy 2
{ - 2y = 4¢t
at 7Y
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Some connections to linear (matrix) algebra

Systems of equations written in operator notation.

Equation in
operator notation

+ 229 = 4
Tl e () ()
3581 T 4332 =7 3 4 L9 7

Some differential equations we’ve seen, written in operator notation.

System of equations Operator definition

Equation in

Differential equation Operator definition .
operator notation

dy 2
t - 2y = 4t Lyl =t

-9
at Y
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Some connections to linear (matrix) algebra

Systems of equations written in operator notation.

Equation in
operator notation

+ 229 = 4
Tl e () ()
3581 T 4332 =7 3 4 L9 7

Some differential equations we’ve seen, written in operator notation.

System of equations Operator definition

Differential equation Operator definition Equation in.
operator notation
d d
t= 4 9y — 442 Llyl = t—2 + 24 Lly] = 4t2

dt dt
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Some connections to linear (matrix) algebra

Systems of equations written in operator notation.

Equation in
operator notation

+ 229 = 4
Tl e () ()
3581 T 4332 =7 3 4 L9 7

Some differential equations we’ve seen, written in operator notation.

System of equations Operator definition

Differential equation Operator definition Equation in.
operator notation
dy 2 dy 2
t -2y = 4t Lyl =1t - 2 Liy| = 4t
o 2y Y =t +2y Y]

y' +4y +4y =0
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Some connections to linear (matrix) algebra

Systems of equations written in operator notation.

Equation in
operator notation

+ 229 = 4
Tl e () ()
3581 T 4332 =7 3 4 L9 7

Some differential equations we’ve seen, written in operator notation.

System of equations Operator definition

Differential equation Operator definition Equation in.
operator notation
dy 2 dy 2
t -2y = 4t Lyl =1t - 2 Liy| = 4t
o 2y Y =t +2y Y]

y'+4y +4y =0 Lyl =y" + 4y + 4y
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Some connections to linear (matrix) algebra

Systems of equations written in operator notation.

Equation in
operator notation

+ 229 = 4
Tl e () ()
3581 T 4332 =7 3 4 L9 7

Some differential equations we’ve seen, written in operator notation.

System of equations Operator definition

Differential equation Operator definition Equation in.
operator notation
dy 2 dy 2
t -2y = 4t Lyl =1t - 2 Liy| = 4t
o 2y Y =t +2y Y]

y' + 4y + 4y =0 Lyl =y" + 4y’ + 4y Lyl =0
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e A more detailed connection between matrix equations and DEs:
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Some connections to linear (matrix) algebra

e A more detailed connection between matrix equations and DEs:

e A vector as a function

S
|

e A function is just a vector with an infinite number of entries.

y(t) = sin(t)
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Some connections to linear (matrix) algebra

e A more detailed connection between matrix equations and DEs:

e A vector as a function

S
|

e A function is just a vector with an infinite number of entries.

y(t) = sin(t) ..0'... .."..

-O. >
.'00000'.
¢ A differential operator is just a really big matrix.
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