Today

- Midterm 2 comments
- Pre-lecture week 12 comments
- Post-lecture week 11 comments
- Using FS to solve the Diffusion equation.

Solving the Diffusion equation using FS - Preview

- The Diffusion equation is solved by functions of the form

$$
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}} \quad \begin{aligned}
c(x, t) & =b e^{-w^{2} D t} \sin (w x) \\
d(x, t) & =a e^{-w^{2} D t} \cos (w x) \\
g(x, t) & =\mathrm{constant}
\end{aligned}
$$

Solving the Diffusion equation using FS - Preview

- The Diffusion equation is solved by functions of the form

$$
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}} \quad \begin{aligned}
c(x, t) & =b e^{-w^{2} D t} \sin (w x) \\
d(x, t) & =a e^{-w^{2} D t} \cos (w x) \\
g(x, t) & =\text { constant }
\end{aligned}
$$

- Boundary conditions determine which of these to use.

Solving the Diffusion equation using FS - Preview

- The Diffusion equation is solved by functions of the form

$$
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}} \quad \begin{aligned}
c(x, t) & =b e^{-w^{2} D t} \sin (w x) \\
d(x, t) & =a e^{-w^{2} D t} \cos (w x) \\
g(x, t) & =\mathrm{constant}
\end{aligned}
$$

- Boundary conditions determine which of these to use.
- For Dirichlet BCs, use $\mathrm{c}(\mathrm{x}, \mathrm{t})$ with $\mathrm{w}=\mathrm{n} \pi \mathrm{x} / \mathrm{L}$.

$$
c(0, t)=0, c(L, t)=0 \Rightarrow c_{n}(x, t)=b_{n} e^{-\frac{n^{2} \pi^{2}}{L^{2}} D t} \sin \left(\frac{n \pi x}{L}\right)
$$

Solving the Diffusion equation using FS - Preview

- The Diffusion equation is solved by functions of the form

$$
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}} \quad \begin{aligned}
c(x, t) & =b e^{-w^{2} D t} \sin (w x) \\
d(x, t) & =a e^{-w^{2} D t} \cos (w x) \\
g(x, t) & =\mathrm{constant}
\end{aligned}
$$

- Boundary conditions determine which of these to use.
- For Dirichlet BCs, use $\mathrm{c}(\mathrm{x}, \mathrm{t})$ with $\mathrm{w}=\mathrm{n} \pi \mathrm{x} / \mathrm{L}$.

$$
c(0, t)=0, c(L, t)=0 \Rightarrow c_{n}(x, t)=b_{n} e^{-\frac{n^{2} \pi^{2}}{L^{2}} D t} \sin \left(\frac{n \pi x}{L}\right)
$$

- For Neumann BCs, use $d(x, t)$ with $w=n \pi x / L$ and $g(x, t)$.

$$
\frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(L, t)=0 \Rightarrow d_{n}(x, t)=a_{n} e^{-\frac{n^{2} \pi^{2}}{L^{2}} D t} \cos \left(\frac{n \pi x}{L}\right)
$$

Solving the Diffusion equation using FS - Preview

- The Diffusion equation is solved by functions of the form

$$
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}} \quad \begin{aligned}
c(x, t) & =b e^{-w^{2} D t} \sin (w x) \\
d(x, t) & =a e^{-w^{2} D t} \cos (w x) \\
g(x, t) & =\mathrm{constant}
\end{aligned}
$$

- Boundary conditions determine which of these to use.
- For Dirichlet BCs, use $\mathrm{c}(\mathrm{x}, \mathrm{t})$ with $\mathrm{w}=\mathrm{n} \pi \mathrm{x} / \mathrm{L}$.

$$
c(0, t)=0, c(L, t)=0 \Rightarrow c_{n}(x, t)=b_{n} e^{-\frac{n^{2} \pi^{2}}{L^{2}} D t} \sin \left(\frac{n \pi x}{L}\right)
$$

- For Neumann BCs, use $d(x, t)$ with $w=n \pi x / L$ and $g(x, t)$.

$$
\frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(L, t)=0 \Rightarrow d_{n}(x, t)=a_{n} e^{-\frac{n^{2} \pi^{2}}{L^{2}} D t} \cos \left(\frac{n \pi x}{L}\right)
$$

- The initial condition determines the a_{n} or b_{n} values via Fourier series.

The Diffusion Equation

-What does a steady state of the Diffusion equation look like?

$$
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}
$$

The Diffusion Equation

- What does a steady state of the Diffusion equation look like?

$$
\begin{aligned}
& \frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}} \\
& D \frac{d^{2} c}{d x^{2}}=0
\end{aligned}
$$

The Diffusion Equation

- What does a steady state of the Diffusion equation look like?

$$
\begin{aligned}
& \frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}} \\
& D \frac{d^{2} c}{d x^{2}}=0 \\
& \frac{d c}{d x}=A
\end{aligned}
$$

The Diffusion Equation

- What does a steady state of the Diffusion equation look like?

$$
\begin{aligned}
& \frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}} \\
& D \frac{d^{2} c}{d x^{2}}=0 \\
& \frac{d c}{d x}=A \\
& c_{s s}(x)=A x+B
\end{aligned}
$$

The Diffusion Equation

An initial condition specifies where all the mass is initially: $c(x, 0)=f(x)$.

The Diffusion Equation

An initial condition specifies where all the mass is initially: $c(x, 0)=f(x)$.

The Diffusion Equation

An initial condition specifies where all the mass is initially: $c(x, 0)=f(x)$.

The Diffusion Equation

An initial condition specifies where all the mass is initially: $c(x, 0)=f(x)$.

A common boundary condition (Dirichlet) states that the concentration is forced to be zero at the end point(s) (infinite reservoir):

$$
c(0, t)=0, c(L, t)=0
$$

The Diffusion Equation

An initial condition specifies where all the mass is initially: $c(x, 0)=f(x)$.

A common boundary condition (Dirichlet) states that the concentration is forced to be zero at the end point(s) (infinite reservoir):

$$
c(0, t)=0, c(L, t)=0
$$

The Diffusion Equation

An initial condition specifies where all the mass is initially: $c(x, 0)=f(x)$.

A common boundary condition (Dirichlet) states that the concentration is forced to be zero at the end point(s) (infinite reservoir):

$$
c(0, t)=0, c(L, t)=0
$$

What is the steady state in this case?

The Diffusion Equation

An initial condition specifies where all the mass is initially: $c(x, 0)=f(x)$.

A common boundary condition (Dirichlet) states that the concentration is forced to be zero at the end point(s) (infinite reservoir):

$$
c(0, t)=0, c(L, t)=0
$$

What is the steady state in this case? $\quad \mathrm{C}_{s s}(\mathrm{x})=\mathrm{Ax}+\mathrm{B}$

The Diffusion Equation

An initial condition specifies where all the mass is initially: $c(x, 0)=f(x)$.

A common boundary condition (Dirichlet) states that the concentration is forced to be zero at the end point(s) (infinite reservoir):

$$
c(0, t)=0, c(L, t)=0
$$

What is the steady state in this case? $\quad \mathrm{C}_{\mathrm{ss}}(\mathrm{x})=\mathrm{Ax}+\mathrm{B}$

$$
c_{s s}(0)=B=0
$$

The Diffusion Equation

An initial condition specifies where all the mass is initially: $c(x, 0)=f(x)$.

A common boundary condition (Dirichlet) states that the concentration is forced to be zero at the end point(s) (infinite reservoir):

$$
c(0, t)=0, c(L, t)=0
$$

What is the steady state in this case? $\quad \mathrm{C}_{\mathrm{ss}}(\mathrm{x})=\mathrm{Ax}+\mathrm{B}$

$$
c_{s s}(0)=B=0, \quad c_{s s}(L)=A L=0
$$

The Diffusion Equation

An initial condition specifies where all the mass is initially: $c(x, 0)=f(x)$.

A common boundary condition (Dirichlet) states that the concentration is forced to be zero at the end point(s) (infinite reservoir):

$$
c(0, t)=0, c(L, t)=0
$$

What is the steady state in this case? $\quad \mathrm{C}_{\mathrm{ss}}(\mathrm{x})=\mathrm{Ax}+\mathrm{B}$

$$
C_{s s}(0)=B=0, \quad C_{s s}(L)=A L=0, \quad A=0, B=0 \quad \text { so } \quad C_{s s}(x)=0!
$$

The Diffusion Equation

Solve

$$
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}
$$

subject to

$$
c(0, t)=0, c(L, t)=0
$$

(Dirichlet boundary conditions)
and

$$
c(x, 0)=f(x)
$$

(initial condition)

The Diffusion Equation

Solve

$$
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}
$$

subject to

$$
\begin{array}{cl}
c(0, t)=0, c(L, t)=0 & \text { (Dirichlet bounda } \\
c(x, 0)=f(x) & \text { (initial condition) }
\end{array}
$$

(Dirichlet boundary conditions)
and

For any a and any w, the following are both solutions to the PDE:

$$
c(x, t)=b e^{-w^{2} D t} \sin (w x) \quad d(x, t)=a e^{-w^{2} D t} \cos (w x)
$$

The Diffusion Equation

Solve

$$
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}
$$

subject to

$$
c(0, t)=0, c(L, t)=0
$$

(Dirichlet boundary conditions)
and

$$
c(x, 0)=f(x)
$$

(initial condition)

For any a and any w , the following are both solutions to the PDE:

$$
\begin{aligned}
& c(x, t)=b e^{-w^{2} D t} \sin (w x) \quad d(x, t)=a e^{-w^{2} D t} \cos (w x) \\
& c(0, t)=b \sin (0)=0
\end{aligned}
$$

The Diffusion Equation

Solve

$$
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}
$$

subject to

$$
c(0, t)=0, c(L, t)=0
$$

(Dirichlet boundary conditions)
and

$$
c(x, 0)=f(x)
$$

(initial condition)

For any a and any w , the following are both solutions to the PDE:

$$
\begin{aligned}
& c(x, t)=b e^{-w^{2} D t} \sin (w x) \quad d(x, t)=a e^{-w^{2} D t} \cos (w x) \\
& c(0, t)=b \sin (0)=0 \text { yup!. }
\end{aligned}
$$

The Diffusion Equation

Solve

$$
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}
$$

subject to

$$
c(0, t)=0, c(L, t)=0
$$

(Dirichlet boundary conditions)
and

$$
c(x, 0)=f(x)
$$

(initial condition)

For any a and any w , the following are both solutions to the PDE:

$$
\begin{array}{ll}
c(x, t)=b e^{-w^{2} D t} \sin (w x) & d(x, t)=a e^{-w^{2} D t} \cos (w x) \\
c(0, t)=b \sin (0)=0 \text { yup! } & d(0, t)=a \cos (0)=a
\end{array}
$$

The Diffusion Equation

Solve

$$
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}
$$

subject to

$$
c(0, t)=0, c(L, t)=0
$$

(Dirichlet boundary conditions)
and

$$
c(x, 0)=f(x)
$$

(initial condition)

For any a and any w, the following are both solutions to the PDE:

$$
\begin{array}{ll}
c(x, t)=b e^{-w^{2} D t} \sin (w x) \\
c(0, t)=b \sin (0)=0 \text { yup }! & d(x, t)=a e^{-w^{2} D t} \cos (w x) \\
d(0, t)=a \cos (0)=a
\end{array}
$$

The Diffusion Equation

Solve

$$
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}
$$

subject to

$$
c(0, t)=0, c(L, t)=0
$$

(Dirichlet boundary conditions)
and

$$
c(x, 0)=f(x)
$$

(initial condition)

For any a and any w, the following are both solutions to the PDE:

$$
\begin{array}{ll}
c(x, t)=b e^{-w^{2} D t} \sin (w x) & d(x, t)=a e^{-w^{2} D t} \cos (w x) \\
c(0, t)=b \sin (0)=0 \text { Yup! } \\
c(L, t)=b \sin (w L)=0 & d(0, t)=a \cos (0)=a
\end{array}
$$

The Diffusion Equation

Solve

$$
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}
$$

subject to

$$
c(0, t)=0, c(L, t)=0
$$

(Dirichlet boundary conditions)
and

$$
c(x, 0)=f(x)
$$

(initial condition)

For any a and any w, the following are both solutions to the PDE:

$$
\begin{aligned}
c(x, t) & =b e^{-w^{2} D t} \sin (w x) \\
c(0, t) & =b \sin (0)=0 \text { Yup. } \\
c(L, t) & =b \sin (w L)=0 \\
& d(0, t)=a e^{-w^{2} D t} \cos (w x) \\
w L & =n \pi
\end{aligned}
$$

The Diffusion Equation

Solve

$$
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}
$$

subject to

$$
c(0, t)=0, c(L, t)=0
$$

(Dirichlet boundary conditions)
and

$$
c(x, 0)=f(x)
$$

(initial condition)

For any a and any w , the following are both solutions to the PDE:

$$
\begin{aligned}
c(x, t) & =b e^{-w^{2} D t} \sin (w x) \\
c(0, t) & =b \sin (0)=0 \text { yup! } \\
c(L, t) & =b \sin (w L)=0 \\
w L & =n \pi \\
w & =\frac{n \pi}{L}
\end{aligned}
$$

The Diffusion Equation

Solve

$$
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}
$$

subject to

$$
c(0, t)=0, c(L, t)=0
$$

(Dirichlet boundary conditions)
and

$$
c(x, 0)=f(x)
$$

(initial condition)
For any a and any w, the following are both solutions to the PDE:

$$
\begin{array}{lc}
c(x, t)=b e^{-w^{2} D t} \sin (w x) & d(x, t)=a e^{-w^{2} D t} \cos (w x) \\
c(0, t)=b \sin (0)=0 \text { yup. } & d(0, t)=a \cos (0)=a \\
c(L, t)=b \sin (w L)=0 & \text { For anv } n \text { and anv } b_{n}
\end{array}
$$

For any n and any b_{n},

$$
w L=n \pi
$$

$$
w=\frac{n \pi}{L}
$$

$$
c_{n}(x, t)=b_{n} e^{-\frac{n^{2} \pi^{2}}{L^{2}} D t} \sin \left(\frac{n \pi}{L} x\right)
$$

The Diffusion Equation

So far, we can add these up with any choice of b_{n} (provided the series converges) to get a solution.

$$
c(x, t)=\sum_{n=1}^{\infty} c_{n}(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-\frac{n^{2} \pi^{2}}{L^{2}} D t} \sin \left(\frac{n \pi}{L} x\right)
$$

The Diffusion Equation

So far, we can add these up with any choice of b_{n} (provided the series converges) to get a solution.

$$
c(x, t)=\sum_{n=1}^{\infty} c_{n}(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-\frac{n^{2} \pi^{2}}{L^{2}} D t} \sin \left(\frac{n \pi}{L} x\right)
$$

Now, choose b_{n} so that $c(x, t)$ satisfies the IC. That is, $c(x, 0)=f(x)$:

$$
c(x, 0)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi}{L} x\right)=f(x)
$$

The Diffusion Equation

So far, we can add these up with any choice of b_{n} (provided the series converges) to get a solution.

$$
c(x, t)=\sum_{n=1}^{\infty} c_{n}(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-\frac{n^{2} \pi^{2}}{L^{2}} D t} \sin \left(\frac{n \pi}{L} x\right)
$$

Now, choose b_{n} so that $c(x, t)$ satisfies the IC. That is, $c(x, 0)=f(x)$:

$$
c(x, 0)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi}{L} x\right)=f(x)
$$

That means we choose b_{n} to be the coefficients of a Fourier series for $f(x)$ consisting entirely of sin terms.

The Diffusion Equation

So far, we can add these up with any choice of b_{n} (provided the series converges) to get a solution.

$$
c(x, t)=\sum_{n=1}^{\infty} c_{n}(x, t)=\sum_{n=1}^{\infty} b_{n} e^{-\frac{n^{2} \pi^{2}}{L^{2}} D t} \sin \left(\frac{n \pi}{L} x\right)
$$

Now, choose b_{n} so that $c(x, t)$ satisfies the IC. That is, $c(x, 0)=f(x)$:

$$
c(x, 0)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi}{L} x\right)=f(x)
$$

That means we choose b_{n} to be the coefficients of a Fourier series for $f(x)$ consisting entirely of sin terms.

How do we get a Fourier sine series for $f(x)$ defined on $[0, L]$?

The Diffusion Equation

Solve the equation $\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}$
subject to boundary conditions $c(0, t)=0, c(2, t)=0$ and initial condition $c(x, 0)=x$ defined on $[0,2]$.

The Diffusion Equation

Solve the equation $\quad \frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}$
subject to boundary conditions $c(0, t)=0, c(2, t)=0$ and initial condition $c(x, 0)=x$ defined on $[0,2]$. How do we solve this?
(A) Extend IC so it's periodic ($\mathrm{P}=2$), then find FS.

(C) Extend IC so it's even on [-2,2], then extend again so it's periodic ($\mathrm{P}=4$), finally find FS (constr. and cosines).

The Diffusion Equation

Solve the equation $\quad \frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}$
subject to boundary conditions $c(0, t)=0, c(2, t)=0$ and initial condition $c(x, 0)=x$ defined on $[0,2]$. How do we solve this?
(A) Extend IC so it's periodic ($\mathrm{P}=2$), then find FS.

(C) Extend IC so it's even on [-2,2], then extend again so it's periodic ($\mathrm{P}=4$), finally find FS (const. and cosines)

Note: the IC does not satisfy the BC at $x=L$ in this case - that's ok.

The Diffusion equation - BC terminology

$$
c(0, t)=0, c(L, t)=0
$$

$$
\frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(L, t)=0
$$

The Diffusion equation - BC terminology

$$
c(0, t)=0, c(L, t)=0
$$

Dirichlet BCs, huge empty chambers at both ends of the pipe.

$$
\frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(L, t)=0
$$

The Diffusion equation - BC terminology

$$
c(0, t)=0, c(L, t)=0
$$

Dirichlet BCs, huge empty chambers at both ends of the pipe.

- use sin functions for Fourier series (Fourier Sine series)

$$
\frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(L, t)=0
$$

The Diffusion equation - BC terminology

$$
c(0, t)=0, c(L, t)=0
$$

Dirichlet BCs, huge empty chambers at both ends of the pipe.

- use sin functions for Fourier series (Fourier Sine series)
- extend $f(x)$ as an odd function on [-L,L] and then extend as periodic (2L).

$$
\frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(L, t)=0
$$

The Diffusion equation - BC terminology

$$
c(0, t)=0, c(L, t)=0
$$

Dirichlet BCs, huge empty chambers at both ends of the pipe.

- use sin functions for Fourier series (Fourier Sine series)
- extend $f(x)$ as an odd function on [-L,L] and then extend as periodic (2L).

$$
\frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(L, t)=0
$$

Neumann BCs, both ends of the pipe are sealed so nothing escapes.

The Diffusion equation - BC terminology

$$
c(0, t)=0, c(L, t)=0
$$

Dirichlet BCs, huge empty chambers at both ends of the pipe.

- use sin functions for Fourier series (Fourier Sine series)
- extend $f(x)$ as an odd function on [-L,L] and then extend as periodic (2L).

$$
\frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(L, t)=0
$$

Neumann BCs, both ends of the pipe are sealed so nothing escapes.

- use constant + cosine functions for Fourier series (Fourier Cosine series)

The Diffusion equation - BC terminology

$$
c(0, t)=0, c(L, t)=0
$$

Dirichlet BCs, huge empty chambers at both ends of the pipe.

- use sin functions for Fourier series (Fourier Sine series)
- extend $f(x)$ as an odd function on [-L,L] and then extend as periodic (2L).

$$
\frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(L, t)=0
$$

Neumann BCs, both ends of the pipe are sealed so nothing escapes.

- use constant + cosine functions for Fourier series (Fourier Cosine series)
- extend $f(x)$ as an even function on [-L,L] and then extend as periodic (2L).

The Diffusion equation - BC terminology

$$
c(0, t)=0, c(L, t)=0
$$

Dirichlet BCs, huge empty chambers at both ends of the pipe.

- use sin functions for Fourier series (Fourier Sine series)
- extend $f(x)$ as an odd function on [-L,L] and then extend as periodic (2L).

$$
\frac{\partial c}{\partial x}(0, t)=0, \quad \frac{\partial c}{\partial x}(L, t)=0
$$

Neumann BCs, both ends of the pipe are sealed so nothing escapes.

- use constant + cosine functions for Fourier series (Fourier Cosine series)
- extend $f(x)$ as an even function on [-L,L] and then extend as periodic (2L).
- often called no flux BCs, because

The Diffusion equation - BC terminology

$$
c(0, t)=0, c(L, t)=0
$$

Dirichlet BCs, huge empty chambers at both ends of the pipe.

- use sin functions for Fourier series (Fourier Sine series)
- extend $f(x)$ as an odd function on [-L,L] and then extend as periodic (2L).

$$
\frac{\partial c}{\partial x}(0, t)=0, \quad \frac{\partial c}{\partial x}(L, t)=0
$$

Neumann BCs, both ends of the pipe are sealed so nothing escapes.

- use constant + cosine functions for Fourier series (Fourier Cosine series)
- extend $\mathrm{f}(\mathrm{x})$ as an even function on [-L,L] and then extend as periodic (2L).
- often called no flux BCs, because

$$
J_{0}=-D \frac{\partial c}{\partial x}(0, t)=0 \text { and } J_{L}=-D \frac{\partial c}{\partial x}(L, t)=0
$$

Examples - odd periodic extension

Examples - odd periodic extension

Examples - odd periodic extension

What is L?

Examples - odd periodic extension

What is L? $L=2$

$$
0
$$

Examples - odd periodic extension

$$
\begin{aligned}
& a_{n}=0 \\
& b_{n}=\frac{(-1)^{n+1} 4}{n \pi}
\end{aligned}
$$

What is L? $L=2$

$$
h(x)=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \frac{n \pi x}{2}
$$

for $x \neq-2,2$.

Examples - odd periodic extension

What is L? $L=2$

$$
\begin{aligned}
& a_{n}=0 \\
& b_{n}=\frac{(-1)^{n+1} 4}{n \pi}
\end{aligned}
$$

$$
h(x)=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \frac{n \pi x}{2}
$$

for $x \neq-2,2$.

$$
c(x, t)=\frac{4}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} e^{-\frac{n^{2} \pi^{2} D t}{4}} \sin \left(\frac{n \pi x}{2}\right)
$$

Even and odd extensions

- For a function $f(x)$ defined on $[0, L]$, the even extension of $f(x)$ is the function

$$
f_{e}(x)=\left\{\begin{array}{cl}
f(x) & \text { for } 0 \leq x \leq L, \\
f(-x) & \text { for }-L \leq x<0 .
\end{array}\right.
$$

- For a function $f(x)$ defined on $[0, L]$, the odd extension of $f(x)$ is the function

$$
f_{o}(x)=\left\{\begin{array}{cl}
f(x) & \text { for } 0 \leq x \leq L, \\
-f(-x) & \text { for }-L \leq x<0 .
\end{array}\right.
$$

Even and odd extensions

- For a function $f(x)$ defined on $[0, L]$, the even extension of $f(x)$ is the function

$$
f_{e}(x)=\left\{\begin{array}{cl}
f(x) & \text { for } 0 \leq x \leq L, \\
f(-x) & \text { for }-L \leq x<0 .
\end{array}\right.
$$

- For a function $f(x)$ defined on $[0, L]$, the odd extension of $f(x)$ is the function

$$
f_{o}(x)=\left\{\begin{array}{cl}
f(x) & \text { for } 0 \leq x \leq L, \\
-f(-x) & \text { for }-L \leq x<0 .
\end{array}\right.
$$

- Because these functions are even/odd, their Fourier Series have a couple simplifying features:

$$
\begin{array}{ll}
f_{e}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L} & a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x \\
f_{o}(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} & b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
\end{array}
$$

Even and odd extensions

- For a function $f(x)$ defined on $[0, L]$, the even extension of $f(x)$ is the function

$$
f_{e}(x)=\left\{\begin{array}{cl}
f(x) & \text { for } 0 \leq x \leq L, \\
f(-x) & \text { for }-L \leq x<0 .
\end{array}\right.
$$

- For a function $f(x)$ defined on $[0, L]$, the odd extension of $f(x)$ is the function

$$
f_{o}(x)=\left\{\begin{array}{cl}
f(x) & \text { for } 0 \leq x \leq L, \\
-f(-x) & \text { for }-L \leq x<0 .
\end{array}\right.
$$

- Because these functions are even/odd, their Fourier Series have a couple simplifying features:

$$
\begin{array}{ll}
f_{e}\left(x_{n}\right)=\frac{\sqrt{x_{0}}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L} & a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x \\
f_{o}(x)=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L} & b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
\end{array}
$$

Even and odd extensions

- For a function $f(x)$ defined on $[0, L]$, the even extension of $f(x)$ is the function

$$
f_{e}(x)=\left\{\begin{array}{cl}
f(x) & \text { for } 0 \leq x \leq L \\
f(-x) & \text { for }-L \leq x<0 .
\end{array}\right.
$$

- For a function $f(x)$ defined on $[0, L]$, the odd extension of $f(x)$ is the function

$$
f_{o}(x)=\left\{\begin{array}{cl}
f(x) & \text { for } 0 \leq x \leq L, \\
-f(-x) & \text { for }-L \leq x<0 .
\end{array}\right.
$$

- Because these functions are even/odd, their Fourier Series have a couple simplifying features:

$$
\begin{array}{ll}
f_{e}\left(x_{\boldsymbol{N}}\right)_{0} \frac{\sqrt{n} x_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L} & a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x \\
f_{o}\left(x_{0}=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}\right. & b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
\end{array}
$$

Even and odd extensions

- For a function $f(x)$ defined on $[0, L]$, the even extension of $f(x)$ is the function

$$
f_{e}(x)=\left\{\begin{array}{cl}
f(x) & \text { for } 0 \leq x \leq L, \\
f(-x) & \text { for }-L \leq x<0 .
\end{array}\right.
$$

- For a function $f(x)$ defined on $[0, L]$, the odd extension of $f(x)$ is the function

$$
f_{o}(x)=\left\{\begin{array}{cl}
f(x) & \text { for } 0 \leq x \leq L, \\
-f(-x) & \text { for }-L \leq x<0 .
\end{array}\right.
$$

- Because these functions are even/odd, their Fourier Series have a couple simplifying features:

$$
\begin{array}{ll}
f_{e}\left(x_{\boldsymbol{N}}\right)_{0} \frac{\sqrt{n} x_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \frac{n \pi x}{L} & a_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x \\
f_{o}\left(x_{0}=\sum_{n=1}^{\infty} b_{n} \sin \frac{n \pi x}{L}\right. & b_{n}=\frac{2}{L} \int_{0}^{L} f(x) \sin \frac{n \pi x}{L} d x
\end{array}
$$

The Diffusion equation

Solve the equation $\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}$
subject to boundary conditions $\frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(2, t)=0$ and initial condition $c(x, 0)=x$ defined on $[0,2]$.

The Diffusion equation

Solve the equation $\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}$
subject to boundary conditions $\frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(2, t)=0$ and initial condition $c(x, 0)=x$ defined on $[0,2]$.

What is the steady state in this case?

The Diffusion equation

Solve the equation $\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}$
subject to boundary conditions $\frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(2, t)=0$
and initial condition $c(x, 0)=x$ defined on $[0,2]$.
What is the steady state in this case? $\quad C_{s s}(x)=A x+B$

The Diffusion equation

Solve the equation $\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}$
subject to boundary conditions $\frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(2, t)=0$ and initial condition $c(x, 0)=x$ defined on $[0,2]$.

What is the steady state in this case?
$\mathrm{C}_{\mathrm{ss}}(\mathrm{x})=\mathrm{Ax}+\mathrm{B}$
$B C$ says $A=0 . B=$?

The Diffusion equation

Solve the equation $\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}$
subject to boundary conditions $\frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(2, t)=0$ and initial condition $c(x, 0)=x$ defined on $[0,2]$.

What is the steady state in this case?
Total initial mass $=\int_{0}^{L} c(x, 0) d x$
$\mathrm{C}_{\mathrm{ss}}(\mathrm{x})=\mathrm{Ax}+\mathrm{B}$
$B C$ says $A=0 . B=$?

The Diffusion equation

Solve the equation $\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}$
subject to boundary conditions $\frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(2, t)=0$ and initial condition $c(x, 0)=x$ defined on $[0,2]$.

What is the steady state in this case?
Total initial mass $=\int_{0}^{L} c(x, 0) d x$
Total "final" mass $=\int_{0}^{L} c_{s s}(x) d x$
$\mathrm{C}_{\mathrm{ss}}(\mathrm{x})=\mathrm{Ax}+\mathrm{B}$
$B C$ says $A=0 . B=$?

The Diffusion equation

Solve the equation $\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}$
subject to boundary conditions $\frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(2, t)=0$ and initial condition $c(x, 0)=x$ defined on $[0,2]$.

What is the steady state in this case?

$$
\mathrm{c}_{\mathrm{ss}}(\mathrm{x})=\mathrm{Ax}+\mathrm{B}
$$

$\int^{L} \quad \mathrm{BC}$ says $\mathrm{A}=0$. $\mathrm{B}=$?
Total initial mass $=\int_{0}^{L} c(x, 0) d x$ No flux BCs so these
Total "final" mass $\left.=\int_{0}^{L} c_{s s}(x) d x\right\}$ must be equal.

The Diffusion equation

Solve the equation $\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}$
subject to boundary conditions $\frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(2, t)=0$ and initial condition $c(x, 0)=x$ defined on $[0,2]$.

What is the steady state in this case? $\quad C_{s s}(x)=A x+B$
$\int^{L} \quad \mathrm{BC}$ says $\mathrm{A}=0 . \mathrm{B}=$?
Total initial mass $\left.=\int_{0}^{L} c(x, 0) d x\right\}$ No flux BCs so these
Total "final" mass $\left.=\int_{0}^{L} c_{s s}(x) d x\right\}$ must be equal.
In this case, the Fourier series tells us the answer:

The Diffusion equation

Solve the equation $\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}$
subject to boundary conditions $\frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(2, t)=0$ and initial condition $c(x, 0)=x$ defined on $[0,2]$.

What is the steady state in this case? $\quad C_{s s}(x)=A x+B$
$\int^{L} \quad \mathrm{BC}$ says $\mathrm{A}=0 . \mathrm{B}=$?
Total initial mass $=\int_{0}^{L} c(x, 0) d x$ No flux BCs so these
Total "final" mass $\left.=\int_{0}^{L} c_{s s}(x) d x\right\} \begin{aligned} & \text { No flux BCs so } \\ & \text { must be equal. }\end{aligned}$
In this case, the Fourier series tells us the answer:
$c(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} e^{-\frac{n^{2} \pi^{2}}{4} D t} \cos \left(\frac{n \pi x}{2}\right)$

The Diffusion equation

Solve the equation $\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}$
subject to boundary conditions $\frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(2, t)=0$ and initial condition $c(x, 0)=x$ defined on $[0,2]$.

What is the steady state in this case? $\quad C_{s s}(x)=A x+B$
$\int^{L} \quad \mathrm{BC}$ says $\mathrm{A}=0 . \mathrm{B}=$?
Total initial mass $=\int_{0}^{L} c(x, 0) d x$ No flux BCs so these
Total "final" mass $\left.=\int_{0}^{L} c_{s s}(x) d x\right\} \begin{aligned} & \text { No flux BCs so } \\ & \text { must be equal. }\end{aligned}$
In this case, the Fourier series tells us the answer:
$c(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} e^{-\frac{n^{2} \pi^{2}}{4} D t} \cos \left(\frac{n \pi x}{2}\right) \longrightarrow \mathrm{c}_{\mathrm{ss}}(\mathrm{x})=\mathrm{a}_{0} / 2$

The Diffusion equation

Solve the equation $\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}$
subject to boundary conditions $\frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(2, t)=0$ and initial condition $c(x, 0)=x$ defined on $[0,2]$.

The Diffusion equation

Solve the equation $\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}$
subject to boundary conditions $\frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(2, t)=0$ and initial condition $c(x, 0)=x$ defined on $[0,2]$.

$$
c(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} e^{-\frac{n^{2} \pi^{2}}{4} D t} \cos \left(\frac{n \pi x}{2}\right)
$$

The Diffusion equation

Solve the equation $\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}$
subject to boundary conditions $\frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(2, t)=0$ and initial condition $c(x, 0)=x$ defined on $[0,2]$.

$$
\begin{gathered}
c(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} e^{-\frac{n^{2} \pi^{2}}{4} D t} \cos \left(\frac{n \pi x}{2}\right) \\
c(x, 0)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi}{L} x\right)=x
\end{gathered}
$$

The Diffusion equation

Solve the equation $\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}$
subject to boundary conditions $\frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(2, t)=0$ and initial condition $c(x, 0)=x$ defined on $[0,2]$.

$$
\begin{gathered}
c(x, t)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} e^{-\frac{n^{2} \pi^{2}}{4} D t} \cos \left(\frac{n \pi x}{2}\right) \\
c(x, 0)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi}{L} x\right)=x
\end{gathered}
$$

The Diffusion equation

Solve the equation $\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}}$
subject to boundary conditions $\frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(2, t)=0$ and initial condition $c(x, 0)=x$ defined on $[0,2]$.

$$
\begin{aligned}
& a_{0}=2 \\
& a_{n}=\frac{4}{n^{2} \pi^{2}}\left((-1)^{n}-1\right) \\
& f(x)=1+\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\left((-1)^{n}-1\right)}{n^{2}} \cos \frac{n \pi x}{2} \\
& c(x, t)=1+\frac{4}{\pi^{2}} \sum_{n=1}^{\infty} \frac{\left((-1)^{n}-1\right)}{n^{2}} e^{-\frac{n^{2} \pi^{2}}{4} D t} \cos \frac{n \pi x}{2}
\end{aligned}
$$

Solving the Diffusion equation using FS - Preview

- The Diffusion equation ties the exponent to the frequency:

$$
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}} \quad \begin{aligned}
c(x, t) & =b e^{-w^{2} D t} \sin (w x) \\
d(x, t) & =a e^{-w^{2} D t} \cos (w x) \\
g(x, t) & =\text { constant }
\end{aligned}
$$

Solving the Diffusion equation using FS - Preview

- The Diffusion equation ties the exponent to the frequency:

$$
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}} \quad \begin{aligned}
c(x, t) & =b e^{-w^{2} D t} \sin (w x) \\
d(x, t) & =a e^{-w^{2} D t} \cos (w x) \\
g(x, t) & =\text { constant }
\end{aligned}
$$

- Boundary conditions whether you need a Fourier sine or cosine series and determines the frequency ω.

$$
\begin{aligned}
& c(0, t)=0, c(L, t)=0 \Rightarrow c_{n}(x, t)=b_{n} e^{-\frac{n^{2} \pi^{2}}{L^{2}} D t} \sin \left(\frac{n \pi x}{L}\right) \\
& \frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(L, t)=0 \Rightarrow d_{n}(x, t)=a_{n} e^{-\frac{n^{2} \pi^{2}}{L^{2}} D t} \cos \left(\frac{n \pi x}{L}\right)
\end{aligned}
$$

Solving the Diffusion equation using FS - Preview

- The Diffusion equation ties the exponent to the frequency:

$$
\frac{d c}{d t}=D \frac{d^{2} c}{d x^{2}} \quad \begin{aligned}
c(x, t) & =b e^{-w^{2} D t} \sin (w x) \\
d(x, t) & =a e^{-w^{2} D t} \cos (w x) \\
g(x, t) & =\text { constant }
\end{aligned}
$$

- Boundary conditions whether you need a Fourier sine or cosine series and determines the frequency ω.

$$
\begin{aligned}
& c(0, t)=0, c(L, t)=0 \Rightarrow c_{n}(x, t)=b_{n} e^{-\frac{n^{2} \pi^{2}}{L^{2}} D t} \sin \left(\frac{n \pi x}{L}\right) \\
& \frac{\partial c}{\partial x}(0, t)=0, \frac{\partial c}{\partial x}(L, t)=0 \Rightarrow d_{n}(x, t)=a_{n} e^{-\frac{n^{2} \pi^{2}}{L^{2}} D t} \cos \left(\frac{n \pi x}{L}\right)
\end{aligned}
$$

- The initial condition determines the a_{n} values via Fourier series.

$$
c(x, 0)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right)=f(x) \quad \text { or } \quad c(x, 0)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right)=f(x)
$$

