
Today

• Intro to the Laplace Transform

• Solving ODEs with forcing terms using Laplace transforms - examples

• Laplace transforms of step functions

• Applications
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= s(sF (s)− f(0))− f �(0)

= s2F (s)− sf(0)− f �(0)

L{ay�� + by� + cy} = 0



Solving IVPs using Laplace transforms (6.2)

• Solve the equation                                      using Laplace transforms.

• Recall that                                             .

• Applying this to f’’, we find that 

• Transforming both sides of the equation, 

ay�� + by� + cy = 0

L{f �(t)} = sF (s)− f(0)

L{f ��(t)} = sL{f �(t)}− f �(0)
= s(sF (s)− f(0))− f �(0)

= s2F (s)− sf(0)− f �(0)

L{ay�� + by� + cy} = 0

aL{y��}+ bL{y�}+ cL{y} = 0
Y (s) =

asy(0) + ay�(0) + by(0)
as2 + bs + c

(as2 + bs + c)Y (s) = asy(0) + ay�(0) + by(0)
a(s2Y (s)− sy(0)− y�(0)) + b(sY (s)− y(0)) + cY (s) = 0



Solving IVPs using Laplace transforms (6.2)

• Solve the equation                           with initial conditions y(0)=1, y’(0)=0 
using Laplace transforms.

y�� + 4y = 0

Y (s) =
(as + b)y(0) + ay�(0)

as2 + bs + c
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using Laplace transforms.

y�� + 4y = 0

Y (s) =
(as + b)y(0) + ay�(0)

as2 + bs + c

a = 1
b = 0
c = 4
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• Solve the equation                           with initial conditions y(0)=1, y’(0)=0 
using Laplace transforms.
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=
s
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Solving IVPs using Laplace transforms (6.2)

• Solve the equation                           with initial conditions y(0)=1, y’(0)=0 
using Laplace transforms.

y�� + 4y = 0

=
s

s2 + 4

• To find y(t), we have to invert the transform. What y(t) would have Y(s) as its 
transform?

Y (s) =
(as + b)y(0) + ay�(0)

as2 + bs + c

a = 1
b = 0
c = 4



Solving IVPs using Laplace transforms (6.2)

• Solve the equation                           with initial conditions y(0)=1, y’(0)=0 
using Laplace transforms.

y�� + 4y = 0

=
s

s2 + 4

• To find y(t), we have to invert the transform. What y(t) would have Y(s) as its 
transform?

• Recall that                                              .   So                             .L{cos(ωt)} =
s

ω2 + s2 y(t) = cos(2t)

Y (s) =
(as + b)y(0) + ay�(0)

as2 + bs + c

a = 1
b = 0
c = 4



Solving IVPs using Laplace transforms (6.2)

• Solve the equation                                       with initial conditions y(0)=1, 
y’(0)=0 using Laplace transforms.

Y (s) =
(as + b)y(0) + ay�(0)

as2 + bs + c

y�� + 6y� + 13y = 0



Solving IVPs using Laplace transforms (6.2)
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y’(0)=0 using Laplace transforms.

Y (s) =
(as + b)y(0) + ay�(0)

as2 + bs + c
Y (s) =

s + 6
s2 + 6s + 13→

y�� + 6y� + 13y = 0



Solving IVPs using Laplace transforms (6.2)

• Solve the equation                                       with initial conditions y(0)=1, 
y’(0)=0 using Laplace transforms.

• To find y(t), we have to invert the transform. What y(t) would have Y(s) as its 
transform?

Y (s) =
(as + b)y(0) + ay�(0)

as2 + bs + c
Y (s) =

s + 6
s2 + 6s + 13→

y�� + 6y� + 13y = 0



Solving IVPs using Laplace transforms (6.2)

• Solve the equation                                       with initial conditions y(0)=1, 
y’(0)=0 using Laplace transforms.

• To find y(t), we have to invert the transform. What y(t) would have Y(s) as its 
transform?

Y (s) =
(as + b)y(0) + ay�(0)

as2 + bs + c

L{eatf(t)} = F (s− a)

L{sin(ωt)} =
ω

s2 + ω2

L{cos(ωt)} =
s

s2 + ω2

Y (s) =
s + 6

s2 + 6s + 13→

y�� + 6y� + 13y = 0



Solving IVPs using Laplace transforms (6.2)

• Solve the equation                                       with initial conditions y(0)=1, 
y’(0)=0 using Laplace transforms.

• To find y(t), we have to invert the transform. What y(t) would have Y(s) as its 
transform?

Y (s) =
(as + b)y(0) + ay�(0)

as2 + bs + c

L{eatf(t)} = F (s− a)

L{sin(ωt)} =
ω

s2 + ω2

L{cos(ωt)} =
s

s2 + ω2

Y (s) =
s + 6

s2 + 6s + 13→

y�� + 6y� + 13y = 0

L{e−3t cos t} =
s + 3

1 + (s + 3)2



Solving IVPs using Laplace transforms (6.2)

• Solve the equation                                       with initial conditions y(0)=1, 
y’(0)=0 using Laplace transforms.

• To find y(t), we have to invert the transform. What y(t) would have Y(s) as its 
transform?

Y (s) =
(as + b)y(0) + ay�(0)

as2 + bs + c

L{eatf(t)} = F (s− a)

Y (s) =
s + 3 + 3

s2 + 6s + 9 + 4

L{sin(ωt)} =
ω

s2 + ω2

L{cos(ωt)} =
s

s2 + ω2

Y (s) =
s + 6

s2 + 6s + 13→

y�� + 6y� + 13y = 0

L{e−3t cos t} =
s + 3

1 + (s + 3)2



Solving IVPs using Laplace transforms (6.2)

• Solve the equation                                       with initial conditions y(0)=1, 
y’(0)=0 using Laplace transforms.

• To find y(t), we have to invert the transform. What y(t) would have Y(s) as its 
transform?

Y (s) =
(as + b)y(0) + ay�(0)

as2 + bs + c

L{eatf(t)} = F (s− a)

Y (s) =
s + 3 + 3

s2 + 6s + 9 + 4

L{sin(ωt)} =
ω

s2 + ω2

L{cos(ωt)} =
s

s2 + ω2

=
s + 3

(s + 3)2 + 4
+

3
(s + 3)2 + 4

=
s + 3

(s + 3)2 + 4
+

3
2

2
(s + 3)2 + 4

Y (s) =
s + 6

s2 + 6s + 13→

y�� + 6y� + 13y = 0

y(t) = e−3t cos(2t) +
3
2
e−3t sin(2t)L{e−3t cos t} =

s + 3
1 + (s + 3)2



Solving IVPs using Laplace transforms (6.2)

• Solve the equation                                       with initial conditions y(0)=1, 
y’(0)=0 using Laplace transforms.

• To find y(t), we have to invert the transform. What y(t) would have Y(s) as its 
transform?

Y (s) =
(as + b)y(0) + ay�(0)

as2 + bs + c

L{eatf(t)} = F (s− a)

Y (s) =
s + 3 + 3

s2 + 6s + 9 + 4

L{sin(ωt)} =
ω

s2 + ω2

L{cos(ωt)} =
s

s2 + ω2

=
s + 3

(s + 3)2 + 4
+

3
(s + 3)2 + 4

=
s + 3

(s + 3)2 + 4
+

3
2

2
(s + 3)2 + 4

Y (s) =
s + 6

s2 + 6s + 13→

y�� + 6y� + 13y = 0

y(t) = e−3t cos(2t) +
3
2
e−3t sin(2t)

λ =
−6± i

√
52− 36

2
= −3± 2i

L{e−3t cos t} =
s + 3

1 + (s + 3)2



Solving IVPs using Laplace transforms (6.2)

• Solve the equation                                       with initial conditions y(0)=1, 
y’(0)=0 using Laplace transforms.

Y (s) =
s + 6

s2 + 6s + 13

y�� + 6y� + 13y = 0



Solving IVPs using Laplace transforms (6.2)

• Solve the equation                                       with initial conditions y(0)=1, 
y’(0)=0 using Laplace transforms.

Y (s) =
s + 6

s2 + 6s + 13

y�� + 6y� + 13y = 0

1. Does the denominator have real or complex roots? Complex.



Solving IVPs using Laplace transforms (6.2)

• Solve the equation                                       with initial conditions y(0)=1, 
y’(0)=0 using Laplace transforms.

Y (s) =
s + 6

s2 + 6s + 13

y�� + 6y� + 13y = 0

1. Does the denominator have real or complex roots? Complex.

2. Complete the square.

=
s + 6

s2 + 6s + 9 + 4
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• Solve the equation                                       with initial conditions y(0)=1, 
y’(0)=0 using Laplace transforms.

Y (s) =
s + 6

s2 + 6s + 13

y�� + 6y� + 13y = 0

1. Does the denominator have real or complex roots? Complex.

2. Complete the square.

=
s + 6

s2 + 6s + 9 + 4
=

s + 6
(s + 3)2 + 4



Solving IVPs using Laplace transforms (6.2)

• Solve the equation                                       with initial conditions y(0)=1, 
y’(0)=0 using Laplace transforms.

Y (s) =
s + 6

s2 + 6s + 13

y�� + 6y� + 13y = 0

1. Does the denominator have real or complex roots? Complex.

2. Complete the square.

3. Put numerator in form (s+α)+β where (s+α) is the completed square.

=
s + 6

s2 + 6s + 9 + 4
=

s + 6
(s + 3)2 + 4

=
s + 3 + 3

(s + 3)2 + 4



Solving IVPs using Laplace transforms (6.2)

• Solve the equation                                       with initial conditions y(0)=1, 
y’(0)=0 using Laplace transforms.

Y (s) =
s + 6

s2 + 6s + 13

y�� + 6y� + 13y = 0

1. Does the denominator have real or complex roots? Complex.

2. Complete the square.

3. Put numerator in form (s+α)+β where (s+α) is the completed square.

=
s + 6

s2 + 6s + 9 + 4
=

s + 6
(s + 3)2 + 4

=
s + 3 + 3

(s + 3)2 + 4
=

s + 3
(s + 3)2 + 4

+
3

(s + 3)2 + 4



Solving IVPs using Laplace transforms (6.2)

• Solve the equation                                       with initial conditions y(0)=1, 
y’(0)=0 using Laplace transforms.

Y (s) =
s + 6

s2 + 6s + 13

y�� + 6y� + 13y = 0

1. Does the denominator have real or complex roots? Complex.

2. Complete the square.

3. Put numerator in form (s+α)+β where (s+α) is the completed square.

4. Fix up coefficient of the term with no s in the numerator.  5. Invert. 

=
s + 6

s2 + 6s + 9 + 4
=

s + 6
(s + 3)2 + 4

=
s + 3 + 3

(s + 3)2 + 4
=

s + 3
(s + 3)2 + 4

+
3

(s + 3)2 + 4

=
s + 3

(s + 3)2 + 22
+

3
2

2
(s + 3)2 + 22


