## Today

- Intro to the Laplace Transform
- Solving ODEs with forcing terms using Laplace transforms - examples
- Laplace transforms of step functions
- Applications


## Laplace transforms - intro (6.1)

- Using the Laplace Transform to solve (linear) ODEs.
- Idea:


## Laplace transforms - intro (6.1)

- Using the Laplace Transform to solve (linear) ODEs.
- Idea:
Unknown $y(t)$ that
satisfies some ODE $\xrightarrow{\text { solve ODE }} \quad$ Found $y(t)$


## Laplace transforms - intro (6.1)

- Using the Laplace Transform to solve (linear) ODEs.
- Idea:



## Laplace transforms - intro (6.1)

- Using the Laplace Transform to solve (linear) ODEs.
- Idea:



## Laplace transforms - intro (6.1)

- Using the Laplace Transform to solve (linear) ODEs.
- Idea:

| Unknown $y(t)$ that <br> satisfies some ODE | $\xrightarrow{\text { solve ODE }}$ | Found $\mathrm{y}(\mathrm{t})$ |
| :---: | :---: | :---: |
| Transform $\mathrm{y}(\mathrm{t})$ <br> and the ODE | Invert the <br> transform |  |
| Unknown $\mathrm{Y}(\mathrm{s})$ that <br> satisfies an algebraic <br> equation | $\xrightarrow{\text { solve algebraic eq }}$ |  |

## Laplace transforms - intro (6.1)

- Using the Laplace Transform to solve (linear) ODEs.
- Idea:

| Unknown $\mathrm{y}(\mathrm{t})$ that satisfies some ODE | $\xrightarrow{\text { solve ODE }}$ | Found $\mathrm{y}(\mathrm{t})$ |
| :---: | :---: | :---: |
| Transform y(t) and the ODE |  |  |
| Unknown Y(s) that satisfies an algebraic equation | $\xrightarrow{\text { solve algebraic eq }}$ | Found $\mathrm{Y}(\mathrm{s})$ |

- Laplace transform of $\mathrm{y}(\mathrm{t}): \quad \mathcal{L}\{y(t)\}=Y(s)=\int_{0}^{\infty} e^{-s t} y(t) d t$


## Laplace transforms - examples (6.1)

-What is the Laplace transform of $y(t)=3$ ?

$$
\mathcal{L}\{y(t)\}=Y(s)=\int_{0}^{\infty} e^{-s t} 3 d t
$$

## Laplace transforms - examples (6.1)

- What is the Laplace transform of $y(t)=3$ ?

$$
\begin{aligned}
\mathcal{L}\{y(t)\}=Y(s) & =\int_{0}^{\infty} e^{-s t} 3 d t \\
& =-\left.\frac{3}{s} e^{-s t}\right|_{0} ^{\infty} \\
& =\lim _{A \rightarrow \infty}-\left.\frac{3}{s} e^{-s t}\right|_{0} ^{A} \\
& =-\frac{3}{s}\left(\lim _{A \rightarrow \infty} e^{-s A}-1\right) \\
& =\frac{3}{s} \text { provided } s>0 \text { and does not } \\
& \text { exist otherwise. }
\end{aligned}
$$

## Laplace transforms - examples (6.1)

- What is the Laplace transform of $y(t)=3$ ?

$$
\begin{aligned}
\mathcal{L}\{y(t)\}=Y(s) & =\int_{0}^{\infty} e^{-s t} 3 d t \\
& =\frac{3}{s} \quad \begin{array}{r}
\text { provided } s>0 \text { and does not } \\
\text { exist otherwise. }
\end{array}
\end{aligned}
$$

## Laplace transforms - examples (6.1)

- What is the Laplace transform of $y(t)=3$ ?

$$
\begin{aligned}
\mathcal{L}\{y(t)\}=Y(s) & =\int_{0}^{\infty} e^{-s t} 3 d t \\
& =\frac{3}{s} \quad \begin{array}{c}
\text { provided } s>0 \text { and does not } \\
\\
\end{array} \quad \begin{aligned}
\text { exist otherwise. }
\end{aligned}
\end{aligned}
$$



## Laplace transforms - examples (6.1)

- What is the Laplace transform of $y(t)=3$ ?

$$
\begin{aligned}
\mathcal{L}\{y(t)\}=Y(s) & =\int_{0}^{\infty} e^{-s t} 3 d t \\
& =\frac{3}{s} \quad \begin{array}{r}
\text { provided } s>0 \text { and does not } \\
\text { exist otherwise. }
\end{array}
\end{aligned}
$$




## Laplace transforms - examples (6.1)

- What is the Laplace transform of $y(t)=3$ ?

$$
\begin{aligned}
& \mathcal{L}\{y(t)\}=Y(s)=\int_{0}^{\infty} e^{-s t} 3 d t \\
&=\frac{3}{s} \quad \text { provided } s>0 \text { and does not } \\
& \quad \text { exist otherwise. }
\end{aligned}
$$




## Laplace transforms - examples (6.1)

- What is the Laplace transform of $y(t)=C$ ?

$$
\mathcal{L}\{y(t)\}=Y(s)=\int_{0}^{\infty} e^{-s t} C d t
$$

## Laplace transforms - examples (6.1)

- What is the Laplace transform of $y(t)=C$ ?

$$
\begin{aligned}
\mathcal{L}\{y(t)\}=Y(s) & =\int_{0}^{\infty} e^{-s t} C d t \\
& =\frac{C}{s} \quad \begin{array}{c}
\text { provided } s>0 \text { and does not } \\
\text { exist otherwise. }
\end{array}
\end{aligned}
$$

## Laplace transforms - examples (6.1)

- What is the Laplace transform of $y(t)=C$ ?

$$
\begin{aligned}
\mathcal{L}\{y(t)\}=Y(s) & =\int_{0}^{\infty} e^{-s t} C d t \\
& =\frac{C}{s} \quad \begin{array}{c}
\text { provided } s>0 \text { and does not } \\
\text { exist otherwise. }
\end{array}
\end{aligned}
$$



## Laplace transforms - examples (6.1)

- What is the Laplace transform of $y(t)=C$ ?

$$
\begin{aligned}
\mathcal{L}\{y(t)\}=Y(s) & =\int_{0}^{\infty} e^{-s t} C d t \\
& =\frac{C}{s} \quad \begin{array}{c}
\text { provided } s>0 \text { and does not } \\
\text { exist otherwise. }
\end{array}
\end{aligned}
$$




## Laplace transforms - examples (6.1)

- What is the Laplace transform of $y(t)=C$ ?

$$
\begin{aligned}
\mathcal{L}\{y(t)\}=Y(s) & =\int_{0}^{\infty} e^{-s t} C d t \\
& =\frac{C}{s} \quad \begin{array}{c}
\text { provided } s>0 \text { and does not } \\
\\
\\
\text { exist otherwise. }
\end{array}
\end{aligned}
$$




## Laplace transforms - examples (6.1)

- What is the Laplace transform of $y(t)=e^{6 t}$ ?

$$
\mathcal{L}\{y(t)\}=Y(s)=\int_{0}^{\infty} e^{-s t} e^{6 t} d t
$$

## Laplace transforms - examples (6.1)

- What is the Laplace transform of $y(t)=e^{6 t}$ ?

$$
\mathcal{L}\{y(t)\}=Y(s)=\int_{0}^{\infty} e^{-s t} e^{6 t} d t
$$

$\begin{array}{lll}\text { (A) } Y(s)=\frac{1}{s-6} & s>0 & \text { (C) } Y(s)=\frac{1}{s-6} \\ \begin{array}{lll}\text { (B) } \quad Y(s)=\frac{1}{6-s} & s>6 & \text { (D) } Y(s)=\frac{1}{6-s}\end{array} \quad s>0\end{array}$

## Laplace transforms - examples (6.1)

- What is the Laplace transform of $y(t)=e^{6 t}$ ?

$$
\mathcal{L}\{y(t)\}=Y(s)=\int_{0}^{\infty} e^{-s t} e^{6 t} d t
$$

(A) $Y(s)=\frac{1}{s-6} \quad s>0 \quad \hat{\omega}(\mathrm{C}) \quad Y(s)=\frac{1}{s-6} \quad s>6$
(B) $Y(s)=\frac{1}{6-s} \quad s>6 \quad$ (D) $Y(s)=\frac{1}{6-s} \quad s>0$

## Laplace transforms - examples (6.1)

- What is the Laplace transform of $y(t)=e^{6 t}$ ?

$$
\mathcal{L}\{y(t)\}=Y(s)=\int_{0}^{\infty} e^{-s t} e^{6 t} d t
$$

(A) $Y(s)=\frac{1}{s-6} \quad s>0 \quad \omega(\mathrm{C}) \quad Y(s)=\frac{1}{s-6} \quad s>6$
(B) $\quad Y(s)=\frac{1}{6-s} \quad s>6$
(D) $Y(s)=\frac{1}{6-s} \quad s>0$


## Laplace transforms - examples (6.1)

- What is the Laplace transform of $y(t)=e^{6 t}$ ?

$$
\mathcal{L}\{y(t)\}=Y(s)=\int_{0}^{\infty} e^{-s t} e^{6 t} d t
$$

(A) $Y(s)=\frac{1}{s-6} \quad s>0 \quad \omega(\mathrm{C}) \quad Y(s)=\frac{1}{s-6} \quad s>6$
(B) $\quad Y(s)=\frac{1}{6-s} \quad s>6$
(D) $Y(s)=\frac{1}{6-s} \quad s>0$



## Laplace transforms - examples (6.1)

- What is the Laplace transform of $y(t)=e^{6 t}$ ?

$$
\mathcal{L}\{y(t)\}=Y(s)=\int_{0}^{\infty} e^{-s t} e^{6 t} d t
$$

(A) $Y(s)=\frac{1}{s-6} \quad s>0 \quad \hat{\omega}(\mathrm{C}) \quad Y(s)=\frac{1}{s-6} \quad s>6$
(B) $\quad Y(s)=\frac{1}{6-s} \quad s>6$
(D) $Y(s)=\frac{1}{6-s} \quad s>0$



## Laplace transforms - examples (6.1)

- What is the Laplace transform of $f(t)=\sin t$ ?


## Laplace transforms - examples (6.1)

- What is the Laplace transform of $f(t)=\sin t$ ?

$$
\mathcal{L}\{f(t)\}=F(s)=\int_{0}^{\infty} e^{-s t} \sin t d t
$$

## Laplace transforms - examples (6.1)

- What is the Laplace transform of $f(t)=\sin t$ ?

$$
\begin{aligned}
\mathcal{L}\{f(t)\} & =F(s)=\int_{0}^{\infty} \begin{array}{c}
e^{-s t} \sin t d t \\
u \\
d v
\end{array} \\
& =\left.e^{-s t}(-\cos t)\right|_{0} ^{\infty}-\int_{0}^{\infty}(-s) e^{-s t}(-\cos t) d t \\
& =\lim _{A \rightarrow \infty} e^{-s A}(-\cos A)-(-1)-\int_{0}^{\infty}(-s) e^{-s t}(-\cos t) d t \\
& =1-s \int_{0}^{\infty} e^{-s t} \cos t d t \\
& =1-s>0 \\
& =1-s^{2} F(s) \quad s>0 \\
\left(1+\left.e^{-s t} \sin t\right|_{0} ^{\infty}+s(s)=1\right. & F(s)=\frac{1}{1+s^{2}} \quad s>
\end{aligned}
$$

## Laplace transforms - examples (6.1)

- What is the Laplace transform of $f(t)=\sin t$ ?



## Laplace transforms - examples (6.1)

-What is the Laplace transform of $h(t)=\sin (\omega t) ? \quad(\omega>0)$

$$
\begin{array}{rlrl}
\mathcal{L}\{h(t)\} & =H(s)=\int_{0}^{\infty} e^{-s t} \sin (\omega t) d t & & =\omega t \\
d u & =\omega d t
\end{array}
$$

(A) $H(s)=\frac{\omega}{\omega^{2}+s^{2}}$
(B) $H(s)=\frac{1}{1+\left(\frac{s}{w}\right)^{2}}$
(C) $H(s)=\frac{1}{\omega} \frac{1}{1+s^{2}}$
(D) $H(s)=\frac{1}{1+s^{2}}$
(E) Huh?

## Laplace transforms - examples (6.1)

-What is the Laplace transform of $h(t)=\sin (\omega t) ? \quad(\omega>0)$
$\mathcal{L}\{h(t)\}=H(s)=\int_{0}^{\infty} e^{-s t} \sin (\omega t) d t \quad \begin{array}{cl}u & =\omega t \\ d u & =\omega d t\end{array}$
$\omega(\mathrm{A}) H(s)=\frac{\omega}{\omega^{2}+s^{2}}$
(B) $H(s)=\frac{1}{1+\left(\frac{s}{w}\right)^{2}}$
(C) $H(s)=\frac{1}{\omega} \frac{1}{1+s^{2}}$
(D) $H(s)=\frac{1}{1+s^{2}}$
(E) Huh?

## Laplace transforms - examples (6.1)

-What is the Laplace transform of $h(t)=\sin (\omega t) ? \quad(\omega>0)$
$\mathcal{L}\{h(t)\}=H(s)=\int_{0}^{\infty} e^{-s t} \sin (\omega t) d t \quad u=\omega t ~ 子 \begin{array}{cl}u & =\omega d t\end{array}$
$\omega(\mathrm{A}) H(s)=\frac{\omega}{\omega^{2}+s^{2}}$

$$
H(s)=\int_{0}^{\infty} e^{-s \frac{u}{\omega}} \sin u \frac{d u}{\omega}
$$

(B) $H(s)=\frac{1}{1+\left(\frac{s}{w}\right)^{2}}$
$=\frac{1}{\omega} \int_{0}^{\infty} e^{-\frac{s}{\omega} u} \sin u d u$
(C) $H(s)=\frac{1}{\omega} \frac{1}{1+s^{2}}$
(D) $H(s)=\frac{1}{1+s^{2}}$
(E) Huh?
$=\frac{1}{\omega} F\left(\frac{s}{\omega}\right)$
$=\frac{1}{\omega} \frac{1}{1+\left(\frac{s}{\omega}\right)^{2}} \quad s>0$

## Laplace transforms - examples (6.1)

- What is the Laplace transform of $g(t)=\cos t$ ?
- Could calculate directly but note that $g(t)=f^{\prime}(t)$ where $f(t)=\sin t$.


## Laplace transforms - examples (6.1)

- What is the Laplace transform of $g(t)=\cos t$ ?
- Could calculate directly but note that $g(t)=f^{\prime}(t)$ where $f(t)=s i n t$.

$$
F(s)=\mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t
$$

## Laplace transforms - examples (6.1)

- What is the Laplace transform of $g(t)=\cos t$ ?
- Could calculate directly but note that $g(t)=f^{\prime}(t)$ where $f(t)=\sin t$.

$$
\begin{aligned}
& F(s)=\mathcal{L}\{f(t)\}=\int_{0}^{\infty} e^{-s t} f(t) d t \\
& G(s)=\mathcal{L}\{g(t)\}=\int_{0}^{\infty} e^{-s t} f^{\prime}(t) d t
\end{aligned}
$$

## Laplace transforms - examples (6.1)

- What is the Laplace transform of $g(t)=\cos t$ ?
- Could calculate directly but note that $g(t)=f^{\prime}(t)$ where $f(t)=\sin t$.

$$
\begin{aligned}
F(s)=\mathcal{L}\{f(t)\} & =\int_{0}^{\infty} e^{-s t} f(t) d t \\
G(s)=\mathcal{L}\{g(t)\} & =\int_{0}^{\infty} e^{-s t} f^{\prime}(t) d t \\
& =\left.e^{-s t} f(t)\right|_{0} ^{\infty}+s \int_{0}^{\infty} e^{-s t} f(t) d t \\
& =-f(0)+s F(s) \quad s>0 \\
& =-0+s \frac{1}{1+s^{2}}=\frac{s}{1+s^{2}}
\end{aligned}
$$

## Laplace transforms - examples (6.1)

- What is the Laplace transform of $g(t)=\cos t$ ?
- Could calculate directly but note that $g(t)=f^{\prime}(t)$ where $f(t)=\sin t$.

$$
\begin{aligned}
F(s)=\mathcal{L}\{f(t)\} & =\int_{0}^{\infty} e^{-s t} f(t) d t \\
G(s)=\mathcal{L}\{g(t)\} & =\int_{0}^{\infty} e^{-s t} f^{\prime}(t) d t \\
& =\left.e^{-s t} f(t)\right|_{0} ^{\infty}+s \int_{0}^{\infty} e^{-s t} f(t) d t \\
& =-f(0)+s F(s) \quad s>0 \\
& =-0+s \frac{1}{1+s^{2}}=\frac{s}{1+s^{2}}
\end{aligned}
$$

## Laplace transforms - examples (6.1)

- What is the Lapla

$$
G(s)=\mathcal{L}\{\cos t\}=\frac{s}{1+s^{2}}
$$

- Could calculate directiy out note that $g(t)=1(t) w n e r e f(t)=\sin t$.

$$
\begin{aligned}
F(s)=\mathcal{L}\{f(t)\} & =\int_{0}^{\infty} e^{-s t} f(t) d t \\
G(s)=\mathcal{L}\{g(t)\} & =\int_{0}^{\infty} e^{-s t} f^{\prime}(t) d t \\
& =\left.e^{-s t} f(t)\right|_{0} ^{\infty}+s \int_{0}^{\infty} e^{-s t} f(t) d t \\
& =-f(0)+s F(s) \quad s>0 \\
& =-0+s \frac{1}{1+s^{2}}=\frac{s}{1+s^{2}}
\end{aligned}
$$

## Laplace transforms - examples (6.1)

- What is the Lapla

$$
G(s)=\mathcal{L}\{\cos t\}=\frac{s}{1+s^{2}}
$$

- Could calculate directiy out note inat $g(1)=1$ (L) wnere $f(t)=\sin t$.


$$
\begin{aligned}
& =-f(0)+s F(s) \quad s>0 \\
& =-0+s \frac{1}{1+s^{2}}=\frac{s}{1+s^{2}}
\end{aligned}
$$

## Laplace transforms - examples (6.1)

- What is the Lapla

$$
G(s)=\mathcal{L}\{\cos t\}=\frac{s}{1+s^{2}}
$$

- Could calculate directiy out note inat $g(1)=1$ (L) wnere $f(t)=\sin t$.


$$
\begin{array}{r}
\mathcal{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)^{s \ngtr 0}{ }^{1+s^{2}} 1+s^{2}
\end{array}
$$

## Laplace transforms - examples (6.1)

- What is the Laplace transform of $h(t)=f(\omega t)$ if $\mathcal{L}\{f(t)\}=F(s)$ ?
- Recall two examples back:


## Laplace transforms - examples (6.1)

- What is the Laplace transform of $h(t)=f(\omega t)$ if $\mathcal{L}\{f(t)\}=F(s)$ ?
- Recall two examples back:

$$
\begin{array}{rlrl}
\mathcal{L}\{h(t)\}=H(s) & =\int_{0}^{\infty} e^{-s t} \sin (\omega t) d t & u & =\omega t \\
& =\int_{0}^{\infty} e^{-s \frac{u}{\omega}} \sin u \frac{d u}{\omega} & \\
& =\frac{1}{\omega} \int_{0}^{\infty} e^{-\frac{s}{\omega} u} \sin u d u & \\
& =\frac{1}{\omega} F\left(\frac{s}{\omega}\right) &
\end{array}
$$

## Laplace transforms - examples (6.1)

- What is the Laplace transform of $h(t)=f(\omega t)$ if $\mathcal{L}\{f(t)\}=F(s)$ ?
- Recall two examples back:

$$
\begin{array}{rlrl}
\mathcal{L}\{h(t)\}=H(s) & =\int_{0}^{\infty} e^{-s t} f(\omega t) d t & u & =\omega t \\
& =\int_{0}^{\infty} e^{-s \frac{u}{\omega}} \sin u \frac{d u}{\omega} & d u=\omega d t \\
& =\frac{1}{\omega} \int_{0}^{\infty} e^{-\frac{s}{\omega} u} \sin u d u \\
& =\frac{1}{\omega} F\left(\frac{s}{\omega}\right)
\end{array}
$$

## Laplace transforms - examples (6.1)

- What is the Laplace transform of $h(t)=f(\omega t)$ if $\mathcal{L}\{f(t)\}=F(s)$ ?
- Recall two examples back:

$$
\begin{array}{rlrl}
\mathcal{L}\{h(t)\}=H(s) & =\int_{0}^{\infty} e^{-s t} f(\omega t) d t & u & =\omega t \\
& =\int_{0}^{\infty} e^{-s \frac{u}{\omega}} f(u) \frac{d u}{\omega} & d u=\omega d t \\
& =\frac{1}{\omega} \int_{0}^{\infty} e^{-\frac{s}{\omega} u} \sin u d u & \\
& =\frac{1}{\omega} F\left(\frac{s}{\omega}\right)
\end{array}
$$

## Laplace transforms - examples (6.1)

- What is the Laplace transform of $h(t)=f(\omega t)$ if $\mathcal{L}\{f(t)\}=F(s)$ ?
- Recall two examples back:

$$
\begin{array}{rlrl}
\mathcal{L}\{h(t)\}=H(s) & =\int_{0}^{\infty} e^{-s t} f(\omega t) d t & u & =\omega t \\
& =\int_{0}^{\infty} e^{-s \frac{u}{\omega}} f(u) \frac{d u}{\omega} & d u & =\omega d t \\
& =\frac{1}{\omega} \int_{0}^{\infty} e^{-\frac{s}{\omega} u} f(u) d u & \\
& =\frac{1}{\omega} F\left(\frac{s}{\omega}\right)
\end{array}
$$

## Laplace transforms - examples (6.1)

- What is the Laplace transform of $h(t)=f(\omega t)$ if $\mathcal{L}\{f(t)\}=F(s)$ ?
- Recall two examples back:

$$
\begin{array}{rlrl}
\mathcal{L}\{h(t)\}=H(s) & =\int_{0}^{\infty} e^{-s t} f(\omega t) d t & u & =\omega t \\
& =\int_{0}^{\infty} e^{-s \frac{u}{\omega}} f(u) \frac{d u}{\omega} & d u=\omega d \\
& =\frac{1}{\omega}\{\cos t\}=\frac{1}{1} & e^{-\frac{s}{\omega} u} f(u) d u & \mathcal{L}\{\cos (\omega t)\} \\
& =\frac{1}{\omega} F\left(\frac{s}{\omega}\right) &
\end{array}
$$

## Laplace transforms - examples (6.1)

- What is the Laplace transform of $h(t)=f(\omega t)$ if $\mathcal{L}\{f(t)\}=F(s)$ ?
- Recall two examples back:

$$
\begin{array}{rlc}
\mathcal{L}\{h(t)\}=H(s) & =\int_{0}^{\infty} e^{-s t} f(\omega t) d t & u=\omega t \\
& =\int_{0}^{\infty} e^{-s \frac{u}{\omega}} f(u) \frac{d u}{\omega} & \mathcal{L}\{\cos t\}=\omega d t \\
& =\frac{1}{\omega} \int_{0}^{\infty} e^{-\frac{s}{\omega} u} f(u) d u & \mathcal{L}\{\cos (\omega t)\} \\
& =\frac{1}{\omega} F\left(\frac{s}{\omega}\right) & =\frac{1}{\omega} \frac{\frac{s}{\omega}}{1+\left(\frac{s}{\omega}\right)^{2}}
\end{array}
$$

## Laplace transforms - examples (6.1)

- What is the Laplace transform of $h(t)=f(\omega t)$ if $\mathcal{L}\{f(t)\}=F(s)$ ?
- Recall two examples back:

$$
\begin{array}{rlc}
\mathcal{L}\{h(t)\}=H(s) & =\int_{0}^{\infty} e^{-s t} f(\omega t) d t & u=\omega t \\
& =\int_{0}^{\infty} e^{-s \frac{u}{\omega}} f(u) \frac{d u}{\omega} & \mathcal{L}\{\cos t\}=\omega d t \\
& =\frac{1}{\omega} \int_{0}^{\infty} e^{-\frac{s}{\omega} u} f(u) d u & \mathcal{L}\{\cos (\omega t)\} \\
& =\frac{1}{\omega} F\left(\frac{s}{\omega}\right) & =\frac{1}{\omega} \frac{\frac{s}{\omega}}{1+\left(\frac{s}{\omega}\right)^{2}} \\
& =\frac{s}{\omega^{2}+s^{2}}
\end{array}
$$

## Laplace transforms - examples (6.1)

- What is the Laplace transform of $k(t)=e^{a t} f(t)$ if $\mathcal{L}\{f(t)\}=F(s)$ ?


## Laplace transforms - examples (6.1)

- What is the Laplace transform of $k(t)=e^{a t} f(t)$ if $\mathcal{L}\{f(t)\}=F(s)$ ?

$$
\mathcal{L}\{k(t)\}=K(s)=\int_{0}^{\infty} e^{-s t} e^{a t} f(t) d t
$$

## Laplace transforms - examples (6.1)

- What is the Laplace transform of $k(t)=e^{a t} f(t)$ if $\mathcal{L}\{f(t)\}=F(s)$ ?

$$
\begin{aligned}
\mathcal{L}\{k(t)\}=K(s) & =\int_{0}^{\infty} e^{-s t} e^{a t} f(t) d t \\
& =\int_{0}^{\infty} e^{-(s-a) t} f(t) d t
\end{aligned}
$$

## Laplace transforms - examples (6.1)

- What is the Laplace transform of $k(t)=e^{a t} f(t)$ if $\mathcal{L}\{f(t)\}=F(s)$ ?

$$
\begin{aligned}
\mathcal{L}\{k(t)\}=K(s) & =\int_{0}^{\infty} e^{-s t} e^{a t} f(t) d t \\
& =\int_{0}^{\infty} e^{-(s-a) t} f(t) d t \\
& =F(s-a)
\end{aligned}
$$

## Laplace transforms - examples (6.1)

- What is the Laplace transform of $k(t)=e^{a t} f(t)$ if $\mathcal{L}\{f(t)\}=F(s)$ ?

$$
\begin{aligned}
\mathcal{L}\{k(t)\}=K(s) & =\int_{0}^{\infty} e^{-s t} e^{a t} f(t) d t \\
& =\int_{0}^{\infty} e^{-(s-a) t} f(t) d t \\
& =F(s-a)
\end{aligned}
$$

$\mathcal{L}\left\{e^{-3 t} \cos t\right\}=$

$$
\mathcal{L}\{\cos t\}=\frac{s}{1+s^{2}}
$$

$$
\text { (C) } \frac{s+3}{s^{2}+6 s+10}
$$

(B) $\frac{1}{1+(s+3)^{2}}$
(D) $\frac{1}{s^{2}+6 s+10}$

## Laplace transforms - examples (6.1)

- What is the Laplace transform of $k(t)=e^{a t} f(t)$ if $\mathcal{L}\{f(t)\}=F(s)$ ?

$$
\begin{aligned}
\mathcal{L}\{k(t)\}=K(s) & =\int_{0}^{\infty} e^{-s t} e^{a t} f(t) d t \\
& =\int_{0}^{\infty} e^{-(s-a) t} f(t) d t \\
& =F(s-a)
\end{aligned}
$$

$\mathcal{L}\left\{e^{-3 t} \cos t\right\}=$

$$
\mathcal{L}\{\cos t\}=\frac{s}{1+s^{2}}
$$

(A) $\frac{s}{1+(s+3)^{2}}$
(B) $\frac{1}{1+(s+3)^{2}}$
$\hat{(C)} \frac{s+3}{s^{2}+6 s+10}$
(D) $\frac{1}{s^{2}+6 s+10}$

## Solving IVPs using Laplace transforms (6.2)

## Solving IVPs using Laplace transforms (6.2)

- Solve the equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ using Laplace transforms.


## Solving IVPs using Laplace transforms (6.2)

- Solve the equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ using Laplace transforms.
- Recall that $\mathcal{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)$.


## Solving IVPs using Laplace transforms (6.2)

- Solve the equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ using Laplace transforms.
- Recall that $\mathcal{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)$.
- Applying this to $\mathrm{f}^{\prime \prime}$, we find that

$$
\mathcal{L}\left\{f^{\prime \prime}(t)\right\}=s \mathcal{L}\left\{f^{\prime}(t)\right\}-f^{\prime}(0)
$$

## Solving IVPs using Laplace transforms (6.2)

- Solve the equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ using Laplace transforms.
- Recall that $\mathcal{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)$.
- Applying this to $\mathrm{f}^{\prime \prime}$, we find that

$$
\begin{aligned}
\mathcal{L}\left\{f^{\prime \prime}(t)\right\} & =s \mathcal{L}\left\{f^{\prime}(t)\right\}-f^{\prime}(0) \\
& =s(s F(s)-f(0))-f^{\prime}(0)
\end{aligned}
$$

## Solving IVPs using Laplace transforms (6.2)

- Solve the equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ using Laplace transforms.
- Recall that $\mathcal{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)$.
- Applying this to $\mathrm{f}^{\prime \prime}$, we find that

$$
\begin{aligned}
\mathcal{L}\left\{f^{\prime \prime}(t)\right\} & =s \mathcal{L}\left\{f^{\prime}(t)\right\}-f^{\prime}(0) \\
& =s(s F(s)-f(0))-f^{\prime}(0) \\
& =s^{2} F(s)-s f(0)-f^{\prime}(0)
\end{aligned}
$$

## Solving IVPs using Laplace transforms (6.2)

- Solve the equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ using Laplace transforms.
- Recall that $\mathcal{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)$.
- Applying this to $\mathrm{f}^{\prime \prime}$, we find that

$$
\begin{aligned}
\mathcal{L}\left\{f^{\prime \prime}(t)\right\} & =s \mathcal{L}\left\{f^{\prime}(t)\right\}-f^{\prime}(0) \\
& =s(s F(s)-f(0))-f^{\prime}(0) \\
& =s^{2} F(s)-s f(0)-f^{\prime}(0)
\end{aligned}
$$

- Transforming both sides of the equation,


## Solving IVPs using Laplace transforms (6.2)

- Solve the equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ using Laplace transforms.
- Recall that $\mathcal{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)$.
- Applying this to $\mathrm{f}^{\prime \prime}$, we find that

$$
\begin{aligned}
\mathcal{L}\left\{f^{\prime \prime}(t)\right\} & =s \mathcal{L}\left\{f^{\prime}(t)\right\}-f^{\prime}(0) \\
& =s(s F(s)-f(0))-f^{\prime}(0) \\
& =s^{2} F(s)-s f(0)-f^{\prime}(0)
\end{aligned}
$$

- Transforming both sides of the equation,

$$
\mathcal{L}\left\{a y^{\prime \prime}+b y^{\prime}+c y\right\}=0
$$

## Solving IVPs using Laplace transforms (6.2)

- Solve the equation $a y^{\prime \prime}+b y^{\prime}+c y=0$ using Laplace transforms.
- Recall that $\mathcal{L}\left\{f^{\prime}(t)\right\}=s F(s)-f(0)$.
- Applying this to $\mathrm{f}^{\prime \prime}$, we find that

$$
\begin{aligned}
\mathcal{L}\left\{f^{\prime \prime}(t)\right\} & =s \mathcal{L}\left\{f^{\prime}(t)\right\}-f^{\prime}(0) \\
& =s(s F(s)-f(0))-f^{\prime}(0) \\
& =s^{2} F(s)-s f(0)-f^{\prime}(0)
\end{aligned}
$$

- Transforming both sides of the equation,

$$
\begin{aligned}
& \mathcal{L}\left\{a y^{\prime \prime}+b y^{\prime}+c y\right\}=0 \quad Y(s)=\frac{a s y(0)+a y^{\prime}(0)}{a s^{2}+b s} \begin{array}{l}
a \underline{\mathcal{L}\left\{y^{\prime \prime}\right\}}+b \underline{\mathcal{L}\left\{y^{\prime}\right\}}+c \underline{\mathcal{L}\{y\}}=0 \\
\left.a\left(\underline{s^{2} Y(s)-s y(0)-y^{\prime}(0)}\right)+b \underline{(s Y(s)-y(0)}\right)+c \underline{Y(s)}=0 \\
\left(a s^{2}+b s+c\right) Y(s)=a s y(0)+a y^{\prime}(0)+b y(0)
\end{array}, .
\end{aligned}
$$

## Solving IVPs using Laplace transforms (6.2)

- Solve the equation $y^{\prime \prime}+4 y=0$ with initial conditions $\mathrm{y}(0)=1, \mathrm{y}^{\prime}(0)=0$ using Laplace transforms.

$$
Y(s)=\frac{(a s+b) y(0)+a y^{\prime}(0)}{a s^{2}+b s+c}
$$

## Solving IVPs using Laplace transforms (6.2)

- Solve the equation $y^{\prime \prime}+4 y=0$ with initial conditions $\mathrm{y}(0)=1, \mathrm{y}^{\prime}(0)=0$ using Laplace transforms.

$$
Y(s)=\frac{(a s+b) y(0)+a y^{\prime}(0)}{a s^{2}+b s+c} \quad \begin{aligned}
& a=1 \\
& b=0 \\
& c=4
\end{aligned}
$$

## Solving IVPs using Laplace transforms (6.2)

- Solve the equation $y^{\prime \prime}+4 y=0$ with initial conditions $\mathrm{y}(0)=1, \mathrm{y}^{\prime}(0)=0$ using Laplace transforms.

$$
\begin{array}{rlrl}
Y(s) & =\frac{(a s+b) y(0)+a y^{\prime}(0)}{a s^{2}+b s+c} & & a=1 \\
& =\frac{s}{s^{2}+4} & & b=0 \\
& c=4
\end{array}
$$

## Solving IVPs using Laplace transforms (6.2)

- Solve the equation $y^{\prime \prime}+4 y=0$ with initial conditions $\mathrm{y}(0)=1, \mathrm{y}^{\prime}(0)=0$ using Laplace transforms.

$$
\begin{array}{rlrl}
Y(s) & =\frac{(a s+b) y(0)+a y^{\prime}(0)}{a s^{2}+b s+c} & & a=1 \\
& =\frac{s}{s^{2}+4} & & b=0 \\
& c=4
\end{array}
$$

- To find $\mathrm{y}(\mathrm{t})$, we have to invert the transform. What $\mathrm{y}(\mathrm{t})$ would have $\mathrm{Y}(\mathrm{s})$ as its transform?


## Solving IVPs using Laplace transforms (6.2)

- Solve the equation $y^{\prime \prime}+4 y=0$ with initial conditions $\mathrm{y}(0)=1, \mathrm{y}^{\prime}(0)=0$ using Laplace transforms.

$$
\begin{array}{rlrl}
Y(s) & =\frac{(a s+b) y(0)+a y^{\prime}(0)}{a s^{2}+b s+c} & & a=1 \\
& =\frac{s}{s^{2}+4} & & b=0 \\
& c=4
\end{array}
$$

- To find $\mathrm{y}(\mathrm{t})$, we have to invert the transform. What $\mathrm{y}(\mathrm{t})$ would have $\mathrm{Y}(\mathrm{s})$ as its transform?
- Recall that $\mathcal{L}\{\cos (\omega t)\}=\frac{s}{\omega^{2}+s^{2}}$. So $y(t)=\cos (2 t)$.


## Solving IVPs using Laplace transforms (6.2)

- Solve the equation $y^{\prime \prime}+6 y^{\prime}+13 y=0$ with initial conditions $\mathrm{y}(0)=1$, $y^{\prime}(0)=0$ using Laplace transforms.

$$
Y(s)=\frac{(a s+b) y(0)+a y^{\prime}(0)}{a s^{2}+b s+c}
$$

## Solving IVPs using Laplace transforms (6.2)

- Solve the equation $y^{\prime \prime}+6 y^{\prime}+13 y=0$ with initial conditions $\mathrm{y}(0)=1$, $y^{\prime}(0)=0$ using Laplace transforms.

$$
Y(s)=\frac{(a s+b) y(0)+a y^{\prime}(0)}{a s^{2}+b s+c} \quad \rightarrow \quad Y(s)=\frac{s+6}{s^{2}+6 s+13}
$$

## Solving IVPs using Laplace transforms (6.2)

- Solve the equation $y^{\prime \prime}+6 y^{\prime}+13 y=0$ with initial conditions $y(0)=1$, $y^{\prime}(0)=0$ using Laplace transforms.

$$
Y(s)=\frac{(a s+b) y(0)+a y^{\prime}(0)}{a s^{2}+b s+c} \quad \rightarrow \quad Y(s)=\frac{s+6}{s^{2}+6 s+13}
$$

- To find $\mathrm{y}(\mathrm{t})$, we have to invert the transform. What $\mathrm{y}(\mathrm{t})$ would have $\mathrm{Y}(\mathrm{s})$ as its transform?


## Solving IVPs using Laplace transforms (6.2)

- Solve the equation $y^{\prime \prime}+6 y^{\prime}+13 y=0$ with initial conditions $y(0)=1$, $y^{\prime}(0)=0$ using Laplace transforms.

$$
Y(s)=\frac{(a s+b) y(0)+a y^{\prime}(0)}{a s^{2}+b s+c} \quad \rightarrow \quad Y(s)=\frac{s+6}{s^{2}+6 s+13}
$$

- To find $\mathrm{y}(\mathrm{t})$, we have to invert the transform. What $\mathrm{y}(\mathrm{t})$ would have $\mathrm{Y}(\mathrm{s})$ as its transform?

$$
\begin{aligned}
& \mathcal{L}\{\cos (\omega t)\}=\frac{s}{s^{2}+\omega^{2}} \\
& \mathcal{L}\{\sin (\omega t)\}=\frac{\omega}{s^{2}+\omega^{2}} \\
& \mathcal{L}\left\{e^{a t} f(t)\right\}=F(s-a)
\end{aligned}
$$

## Solving IVPs using Laplace transforms (6.2)

- Solve the equation $y^{\prime \prime}+6 y^{\prime}+13 y=0$ with initial conditions $y(0)=1$, $y^{\prime}(0)=0$ using Laplace transforms.

$$
Y(s)=\frac{(a s+b) y(0)+a y^{\prime}(0)}{a s^{2}+b s+c} \quad \rightarrow \quad Y(s)=\frac{s+6}{s^{2}+6 s+13}
$$

- To find $\mathrm{y}(\mathrm{t})$, we have to invert the transform. What $\mathrm{y}(\mathrm{t})$ would have $\mathrm{Y}(\mathrm{s})$ as its transform?

$$
\begin{aligned}
& \mathcal{L}\{\cos (\omega t)\}=\frac{s}{s^{2}+\omega^{2}} \\
& \mathcal{L}\{\sin (\omega t)\}=\frac{\omega}{s^{2}+\omega^{2}} \\
& \mathcal{L}\left\{e^{a t} f(t)\right\}=F(s-a) \\
& \mathcal{L}\left\{e^{-3 t} \cos t\right\}=\frac{s+3}{1+(s+3)^{2}}
\end{aligned}
$$

## Solving IVPs using Laplace transforms (6.2)

- Solve the equation $y^{\prime \prime}+6 y^{\prime}+13 y=0$ with initial conditions $y(0)=1$, $y^{\prime}(0)=0$ using Laplace transforms.

$$
Y(s)=\frac{(a s+b) y(0)+a y^{\prime}(0)}{a s^{2}+b s+c} \quad \rightarrow \quad Y(s)=\frac{s+6}{s^{2}+6 s+13}
$$

- To find $\mathrm{y}(\mathrm{t})$, we have to invert the transform. What $\mathrm{y}(\mathrm{t})$ would have $\mathrm{Y}(\mathrm{s})$ as its transform?
$\mathcal{L}\{\cos (\omega t)\}=\frac{s}{s^{2}+\omega^{2}}$

$$
Y(s)=\frac{s+3+3}{s^{2}+6 s+9+4}
$$

$\mathcal{L}\{\sin (\omega t)\}=\frac{\omega}{s^{2}+\omega^{2}}$
$\mathcal{L}\left\{e^{a t} f(t)\right\}=F(s-a)$
$\mathcal{L}\left\{e^{-3 t} \cos t\right\}=\frac{s+3}{1+(s+3)^{2}}$

## Solving IVPs using Laplace transforms (6.2)

- Solve the equation $y^{\prime \prime}+6 y^{\prime}+13 y=0$ with initial conditions $y(0)=1$, $y^{\prime}(0)=0$ using Laplace transforms.

$$
Y(s)=\frac{(a s+b) y(0)+a y^{\prime}(0)}{a s^{2}+b s+c} \quad \rightarrow \quad Y(s)=\frac{s+6}{s^{2}+6 s+13}
$$

- To find $\mathrm{y}(\mathrm{t})$, we have to invert the transform. What $\mathrm{y}(\mathrm{t})$ would have $\mathrm{Y}(\mathrm{s})$ as its transform?
$\mathcal{L}\{\cos (\omega t)\}=\frac{s}{s^{2}+\omega^{2}}$

$$
Y(s)=\frac{s+3+3}{s^{2}+6 s+9+4}
$$

$$
\mathcal{L}\{\sin (\omega t)\}=\frac{\omega}{s^{2}+\omega^{2}}
$$

$$
\mathcal{L}\left\{e^{a t} f(t)\right\}=F(s-a)
$$

$\mathcal{L}\left\{e^{-3 t} \cos t\right\}=\frac{s+3}{1+(s+3)^{2}}$

$$
\begin{aligned}
& =\frac{s+3}{(s+3)^{2}+4}+\frac{3}{(s+3)^{2}+4} \\
& =\frac{s+3}{(s+3)^{2}+4}+\frac{3}{2} \frac{2}{(s+3)^{2}+4}
\end{aligned}
$$

$$
y(t)=e^{-3 t} \cos (2 t)+\frac{3}{2} e^{-3 t} \sin (2 t)
$$

## Solving IVPs using Laplace transforms (6.2)

- Solve the equation $y^{\prime \prime}+6 y^{\prime}+13 y=0$ with initial conditions $y(0)=1$, $y^{\prime}(0)=0$ using Laplace transforms.

$$
Y(s)=\frac{(a s+b) y(0)+a y^{\prime}(0)}{a s^{2} \sqrt{-6+i \sqrt{52-36}} \rightarrow Y(s)=\frac{s+6}{\square+6 s+13}}
$$



$$
\mathcal{L}\{\cos (\omega t)\}=\frac{s}{s^{2}+\omega^{2}}
$$

$$
Y(s)=\frac{s+v+3}{s^{2}+6 s+9+4}
$$

$$
\mathcal{L}\{\sin (\omega t)\}=\frac{\omega}{s^{2}+\omega^{2}}
$$

$$
=\frac{s+3}{(s+3)^{2}+4}+\frac{3}{(s+3)^{2}+4}
$$

$$
\mathcal{L}\left\{e^{a t} f(t)\right\}=F(s-a)
$$

$$
=\frac{s+3}{(s+3)^{2}+4}+\frac{3}{2} \frac{2}{(s+3)^{2}+4}
$$

$\mathcal{L}\left\{e^{-3 t} \cos t\right\}=\frac{s+3}{1+(s+3)^{2}}$

$$
y(t)=e^{-3 t} \cos (2 t)+\frac{3}{2} e^{-3 t} \sin (2 t)
$$

## Solving IVPs using Laplace transforms (6.2)

- Solve the equation $y^{\prime \prime}+6 y^{\prime}+13 y=0$ with initial conditions $\mathrm{y}(0)=1$, $y^{\prime}(0)=0$ using Laplace transforms.
$Y(s)=\frac{s+6}{s^{2}+6 s+13}$


## Solving IVPs using Laplace transforms (6.2)

- Solve the equation $y^{\prime \prime}+6 y^{\prime}+13 y=0$ with initial conditions $\mathrm{y}(0)=1$, $y^{\prime}(0)=0$ using Laplace transforms.
$Y(s)=\frac{s+6}{s^{2}+6 s+13}$

1. Does the denominator have real or complex roots? Complex.

## Solving IVPs using Laplace transforms (6.2)

- Solve the equation $y^{\prime \prime}+6 y^{\prime}+13 y=0$ with initial conditions $\mathrm{y}(0)=1$, $y^{\prime}(0)=0$ using Laplace transforms.

$$
Y(s)=\frac{s+6}{s^{2}+6 s+13}=\frac{s+6}{s^{2}+6 s+9+4}
$$

1. Does the denominator have real or complex roots? Complex.
2. Complete the square.

## Solving IVPs using Laplace transforms (6.2)

- Solve the equation $y^{\prime \prime}+6 y^{\prime}+13 y=0$ with initial conditions $y(0)=1$, $y^{\prime}(0)=0$ using Laplace transforms.

$$
Y(s)=\frac{s+6}{s^{2}+6 s+13}=\frac{s+6}{s^{2}+6 s+9+4}=\frac{s+6}{(s+3)^{2}+4}
$$

1. Does the denominator have real or complex roots? Complex.
2. Complete the square.

## Solving IVPs using Laplace transforms (6.2)

- Solve the equation $y^{\prime \prime}+6 y^{\prime}+13 y=0$ with initial conditions $y(0)=1$, $y^{\prime}(0)=0$ using Laplace transforms.

$$
\begin{aligned}
Y(s)= & \frac{s+6}{s^{2}+6 s+13}=\frac{s+6}{s^{2}+6 s+9+4}=\frac{s+6}{(s+3)^{2}+4} \\
& =\frac{s+3+3}{(s+3)^{2}+4}
\end{aligned}
$$

1. Does the denominator have real or complex roots? Complex.
2. Complete the square.
3. Put numerator in form $(s+\alpha)+\beta$ where $(s+\alpha)$ is the completed square.

## Solving IVPs using Laplace transforms (6.2)

- Solve the equation $y^{\prime \prime}+6 y^{\prime}+13 y=0$ with initial conditions $\mathrm{y}(0)=1$, $y^{\prime}(0)=0$ using Laplace transforms.

$$
\begin{aligned}
Y(s)= & \frac{s+6}{s^{2}+6 s+13}=\frac{s+6}{s^{2}+6 s+9+4}=\frac{s+6}{(s+3)^{2}+4} \\
& =\frac{s+3+3}{(s+3)^{2}+4}=\frac{s+3}{(s+3)^{2}+4}+\frac{3}{(s+3)^{2}+4}
\end{aligned}
$$

1. Does the denominator have real or complex roots? Complex.
2. Complete the square.
3. Put numerator in form $(s+\alpha)+\beta$ where $(s+\alpha)$ is the completed square.

## Solving IVPs using Laplace transforms (6.2)

- Solve the equation $y^{\prime \prime}+6 y^{\prime}+13 y=0$ with initial conditions $\mathrm{y}(0)=1$, $y^{\prime}(0)=0$ using Laplace transforms.

$$
\begin{aligned}
Y(s)= & \frac{s+6}{s^{2}+6 s+13}=\frac{s+6}{s^{2}+6 s+9+4}=\frac{s+6}{(s+3)^{2}+4} \\
& =\frac{s+3+3}{(s+3)^{2}+4}=\frac{s+3}{(s+3)^{2}+4}+\frac{3}{(s+3)^{2}+4} \\
& =\frac{s+3}{(s+3)^{2}+2^{2}}+\frac{3}{2} \frac{2}{(s+3)^{2}+2^{2}}
\end{aligned}
$$

1. Does the denominator have real or complex roots? Complex.
2. Complete the square.
3. Put numerator in form $(s+\alpha)+\beta$ where $(s+\alpha)$ is the completed square.
4. Fix up coefficient of the term with no $s$ in the numerator. 5. Invert.
