Complex roots

- For the general case, $a y^{\prime \prime}+b y^{\prime}+c y=0$, by assuming $y(t)=e^{r t}$ we get the characteristic equation:

$$
a r^{2}+b r+c=0
$$

Complex roots

- For the general case, $a y^{\prime \prime}+b y^{\prime}+c y=0$, by assuming $y(t)=e^{r t}$ we get the characteristic equation:

$$
a r^{2}+b r+c=0
$$

-When $\mathrm{b}^{2}-4 \mathrm{ac}<0$, we get complex roots:

$$
r_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

Complex roots

- For the general case, $a y^{\prime \prime}+b y^{\prime}+c y=0$, by assuming $y(t)=e^{r t}$ we get the characteristic equation:

$$
a r^{2}+b r+c=0
$$

-When $\mathrm{b}^{2}-4 \mathrm{ac}<0$, we get complex roots:

$$
\begin{aligned}
r_{1,2} & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-b \pm \sqrt{-1} \sqrt{4 a c-b^{2}}}{2 a}
\end{aligned}
$$

Complex roots

- For the general case, $a y^{\prime \prime}+b y^{\prime}+c y=0$, by assuming $y(t)=e^{r t}$ we get the characteristic equation:

$$
a r^{2}+b r+c=0
$$

-When $\mathrm{b}^{2}-4 \mathrm{ac}<0$, we get complex roots:

$$
\begin{aligned}
r_{1,2} & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-b \pm \sqrt{-1} \sqrt{4 a c-b^{2}}}{2 a} \\
& =\frac{-b \pm i \sqrt{4 a c-b^{2}}}{2 a}
\end{aligned}
$$

Complex roots

- For the general case, $a y^{\prime \prime}+b y^{\prime}+c y=0$, by assuming $y(t)=e^{r t}$ we get the characteristic equation:

$$
a r^{2}+b r+c=0
$$

-When $\mathrm{b}^{2}-4 \mathrm{ac}<0$, we get complex roots:

$$
\begin{aligned}
r_{1,2} & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-b \pm \sqrt{-1} \sqrt{4 a c-b^{2}}}{2 a} \\
& =\frac{-b \pm i \sqrt{4 a c-b^{2}}}{2 a}=\frac{-b}{2 a} \pm \frac{\sqrt{4 a c-b^{2}}}{2 a} i
\end{aligned}
$$

Complex roots

- For the general case, $a y^{\prime \prime}+b y^{\prime}+c y=0$, by assuming $y(t)=e^{r t}$ we get the characteristic equation:

$$
a r^{2}+b r+c=0
$$

-When $\mathrm{b}^{2}-4 \mathrm{ac}<0$, we get complex roots:

$$
\begin{aligned}
r_{1,2} & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-b \pm \sqrt{-1} \sqrt{4 a c-b^{2}}}{2 a} \\
& =\frac{-b \pm i \sqrt{4 a c-b^{2}}}{2 a}=\frac{-b}{2 a} \pm \frac{\sqrt{4 a c-b^{2}}}{2 a} i \\
& =\alpha \pm \beta i
\end{aligned}
$$

Complex roots

- Complex roots to the characteristic equation mean complex valued solution to the ODE:

Complex roots

- Complex roots to the characteristic equation mean complex valued solution to the ODE:

$$
y_{1}(t)=e^{(\alpha+\beta i) t}
$$

Complex roots

- Complex roots to the characteristic equation mean complex valued solution to the ODE:

$$
\begin{aligned}
y_{1}(t) & =e^{(\alpha+\beta i) t} \\
& =e^{\alpha t} e^{i \beta t}
\end{aligned}
$$

Complex roots

- Complex roots to the characteristic equation mean complex valued solution to the ODE:

$$
\begin{aligned}
y_{1}(t) & =e^{(\alpha+\beta i) t} \\
& =e^{\alpha t} e^{i \beta t} \\
& =e^{\alpha t}(\cos (\beta t)+i \sin (\beta t))
\end{aligned}
$$

Complex roots

- Complex roots to the characteristic equation mean complex valued solution to the ODE:

$$
\begin{aligned}
y_{1}(t) & =e^{(\alpha+\beta i) t} \\
& =e^{\alpha t} e^{i \beta t} \\
& =e^{\alpha t}(\cos (\beta t)+i \sin (\beta t)) \\
y_{2}(t) & =e^{(\alpha-\beta i) t}
\end{aligned}
$$

Complex roots

- Complex roots to the characteristic equation mean complex valued solution to the ODE:

$$
\begin{aligned}
y_{1}(t) & =e^{(\alpha+\beta i) t} \\
& =e^{\alpha t} e^{i \beta t} \\
& =e^{\alpha t}(\cos (\beta t)+i \sin (\beta t)) \\
y_{2}(t) & =e^{(\alpha-\beta i) t} \\
& =e^{\alpha t} e^{-i \beta t}
\end{aligned}
$$

Complex roots

- Complex roots to the characteristic equation mean complex valued solution to the ODE:

$$
\begin{aligned}
y_{1}(t) & =e^{(\alpha+\beta i) t} \\
& =e^{\alpha t} e^{i \beta t} \\
& =e^{\alpha t}(\cos (\beta t)+i \sin (\beta t)) \\
y_{2}(t) & =e^{(\alpha-\beta i) t} \\
& =e^{\alpha t} e^{-i \beta t} \\
& =e^{\alpha t}(\cos (-\beta t)+i \sin (-\beta t))
\end{aligned}
$$

Complex roots

- Complex roots to the characteristic equation mean complex valued solution to the ODE:

$$
\begin{aligned}
y_{1}(t) & =e^{(\alpha+\beta i) t} \\
& =e^{\alpha t} e^{i \beta t} \\
& =e^{\alpha t}(\cos (\beta t)+i \sin (\beta t)) \\
y_{2}(t) & =e^{(\alpha-\beta i) t} \\
& =e^{\alpha t} e^{-i \beta t} \\
& =e^{\alpha t}(\cos (-\beta t)+i \sin (-\beta t)) \\
& =e^{\alpha t}(\cos (\beta t)-i \sin (\beta t))
\end{aligned}
$$

Complex roots

- Complex roots to the characteristic equation mean complex valued solution to the ODE:

$$
\begin{aligned}
& y_{1}(t)=e^{\alpha t}(\cos (\beta t)+i \sin (\beta t)) \\
& y_{2}(t)=e^{\alpha t}(\cos (\beta t)-i \sin (\beta t))
\end{aligned}
$$

Complex roots

- Complex roots to the characteristic equation mean complex valued solution to the ODE:

$$
\begin{aligned}
& y_{1}(t)=e^{\alpha t}(\cos (\beta t)+i \sin (\beta t)) \\
& y_{2}(t)=e^{\alpha t}(\cos (\beta t)-i \sin (\beta t))
\end{aligned}
$$

- Instead of using these to form the general solution, let's use them to find two real valued solutions:

Complex roots

- Complex roots to the characteristic equation mean complex valued solution to the ODE:

$$
\begin{aligned}
& y_{1}(t)=e^{\alpha t}(\cos (\beta t)+i \sin (\beta t)) \\
& y_{2}(t)=e^{\alpha t}(\cos (\beta t)-i \sin (\beta t))
\end{aligned}
$$

- Instead of using these to form the general solution, let's use them to find two real valued solutions:

$$
\frac{1}{2} y_{1}(t)+\frac{1}{2} y_{2}(t)=e^{\alpha t} \cos (\beta t)
$$

Complex roots

- Complex roots to the characteristic equation mean complex valued solution to the ODE:

$$
\begin{aligned}
& y_{1}(t)=e^{\alpha t}(\cos (\beta t)+i \sin (\beta t)) \\
& y_{2}(t)=e^{\alpha t}(\cos (\beta t)-i \sin (\beta t))
\end{aligned}
$$

- Instead of using these to form the general solution, let's use them to find two real valued solutions:

$$
\begin{aligned}
\frac{1}{2} y_{1}(t)+\frac{1}{2} y_{2}(t) & =e^{\alpha t} \cos (\beta t) \\
\frac{1}{2 i} y_{1}(t)-\frac{1}{2 i} y_{2}(t) & =e^{\alpha t} \sin (\beta t)
\end{aligned}
$$

Complex roots

- Complex roots to the characteristic equation mean complex valued solution to the ODE:

$$
\begin{aligned}
& y_{1}(t)=e^{\alpha t}(\cos (\beta t)+i \sin (\beta t)) \\
& y_{2}(t)=e^{\alpha t}(\cos (\beta t)-i \sin (\beta t))
\end{aligned}
$$

- Instead of using these to form the general solution, let's use them to find two real valued solutions:

$$
\begin{aligned}
\frac{1}{2} y_{1}(t)+\frac{1}{2} y_{2}(t) & =e^{\alpha t} \cos (\beta t) \\
\frac{1}{2 i} y_{1}(t)-\frac{1}{2 i} y_{2}(t) & =e^{\alpha t} \sin (\beta t)
\end{aligned}
$$

- General solution:

$$
y(t)=C_{1} e^{\alpha t} \cos (\beta t)+C_{2} e^{\alpha t} \sin (\beta t)
$$

Complex roots

- To be sure this is a general solution, we must check the Wronskian: $W\left(e^{\alpha t} \cos (\beta t), e^{\alpha t} \sin (\beta t)\right)(t)=$
(for you to fill in later - is it non-zero?)

Recall: $W\left(y_{1}, y_{2}\right)(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)$

Complex roots

- Example: Find the (real valued) general solution to the equation

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0
$$

- Step 1: Assume $y(t)=e^{r t}$, plug this into the equation and find values of r that make it work.
(A) $r_{1}=1+2 i, r_{2}=1-2 i$
(A) $r_{1}=2+4 i, r_{2}=2-4 i$
(B) $r_{1}=-1+2 i, r_{2}=-1-2 i$
(B) $r_{1}=-2+4 i, r_{2}=-2-4 i$
(C) $r_{1}=1-2 i, r_{2}=-1+2 i$

Complex roots

- Example: Find the (real valued) general solution to the equation

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0
$$

- Step 1: Assume $y(t)=e^{r t}$, plug this into the equation and find values of r that make it work.
(A) $r_{1}=1+2 i, r_{2}=1-2 i$
(A) $r_{1}=2+4 i, r_{2}=2-4 i$
(B) $r_{1}=-1+2 i, r_{2}=-1-2 i$

$$
\text { (B) } r_{1}=-2+4 i, r_{2}=-2-4 i
$$

$$
\text { (C) } r_{1}=1-2 i, r_{2}=-1+2 i
$$

Complex roots

- Example: Find the (real valued) general solution to the equation

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0
$$

- Step 2: Real part of r goes in the exponent, imaginary part goes in the trig functions.
(A) $y(t)=e^{-t}\left(C_{1} \cos (2 t)+C_{2} \sin (2 t)\right)$
(B) $y(t)=C_{1} e^{(-1+2 i) t}+C_{2} e^{(-1-2 i) t}$
(C) $y(t)=C_{1} \cos (2 t)+C_{2} \sin (2 t)+C_{3} e^{-t}$
(D) $y(t)=C_{1} \cos (2 t)+C_{2} \sin (2 t)$

Complex roots

- Example: Find the (real valued) general solution to the equation

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0
$$

- Step 2: Real part of r goes in the exponent, imaginary part goes in the trig functions.

$$
\begin{aligned}
& \text { (A) } y(t)=e^{-t}\left(C_{1} \cos (2 t)+C_{2} \sin (2 t)\right) \\
& \text { (B) } y(t)=C_{1} e^{(-1+2 i) t}+C_{2} e^{(-1-2 i) t} \\
& \text { (C) } y(t)=C_{1} \cos (2 t)+C_{2} \sin (2 t)+C_{3} e^{-t} \\
& \text { (D) } y(t)=C_{1} \cos (2 t)+C_{2} \sin (2 t)
\end{aligned}
$$

Complex roots

- Example: Find the solution to the IVP

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0, y(0)=1, y^{\prime}(0)=0
$$

- General solution: $\quad y(t)=e^{-t}\left(C_{1} \cos (2 t)+C_{2} \sin (2 t)\right)$
(A) $\quad y(t)=e^{-t}(2 \cos (2 t)+\sin (2 t))$
(B) $y(t)=e^{-t}\left(\cos (2 t)-\frac{1}{2} \sin (2 t)\right)$
(C) $y(t)=\frac{1}{2} e^{-t}(2 \cos (2 t)-\sin (2 t))$
(D) $y(t)=\frac{1}{2} e^{-t}(2 \cos (2 t)+\sin (2 t))$

Complex roots

- Example: Find the solution to the IVP

$$
y^{\prime \prime}+2 y^{\prime}+5 y=0, y(0)=1, y^{\prime}(0)=0
$$

- General solution: $\quad y(t)=e^{-t}\left(C_{1} \cos (2 t)+C_{2} \sin (2 t)\right)$

$$
\begin{aligned}
\text { (A) } y(t) & =e^{-t}(2 \cos (2 t)+\sin (2 t)) \\
\text { (B) } y(t) & =e^{-t}\left(\cos (2 t)-\frac{1}{2} \sin (2 t)\right) \\
\text { (C) } y(t) & =\frac{1}{2} e^{-t}(2 \cos (2 t)-\sin (2 t)) \\
y \text { (D) } y(t) & =\frac{1}{2} e^{-t}(2 \cos (2 t)+\sin (2 t))
\end{aligned}
$$

Repeated roots

- For the general case, $a y^{\prime \prime}+b y^{\prime}+c y=0$, by assuming $y(t)=e^{r t}$ we get the characteristic equation:

$$
a r^{2}+b r+c=0
$$

Repeated roots

- For the general case, $a y^{\prime \prime}+b y^{\prime}+c y=0$, by assuming $y(t)=e^{r t}$ we get the characteristic equation:

$$
a r^{2}+b r+c=0
$$

- There are three cases.
I. Two distinct real roots: $b^{2}-4 a c>0 .\left(r_{1} \neq r_{2}\right)$
II.A repeated real root: $b^{2}-4 a c=0$.
III.Two complex roots: $\mathrm{b}^{2}-4 \mathrm{ac}<0$.

Repeated roots

- For the general case, $a y^{\prime \prime}+b y^{\prime}+c y=0$, by assuming $y(t)=e^{r t}$ we get the characteristic equation:

$$
a r^{2}+b r+c=0
$$

- There are three cases.
I. Two distinct real roots: $b^{2}-4 a c>0 .\left(r_{1} \neq r_{2}\right)$
II.A repeated real root: $b^{2}-4 a c=0$.
III.Two complex roots: $\mathrm{b}^{2}-4 \mathrm{ac}<0$.
- For case ii ($r_{1}=r_{2}=r$), we need another independent solution!

Repeated roots

- For the general case, $a y^{\prime \prime}+b y^{\prime}+c y=0$, by assuming $y(t)=e^{r t}$ we get the characteristic equation:

$$
a r^{2}+b r+c=0
$$

- There are three cases.
I. Two distinct real roots: $b^{2}-4 a c>0 .\left(r_{1} \neq r_{2}\right)$
II.A repeated real root: $b^{2}-4 a c=0$.
III.Two complex roots: $\mathrm{b}^{2}-4 \mathrm{ac}<0$.
- For case ii ($r_{1}=r_{2}=r$), we need another independent solution!
- Reduction of order - a method for guessing another solution.

Reduction of order

- You have one solution $y_{1}(t)$ and you want to find another independent one, $y_{2}(t)$.

Reduction of order

- You have one solution $y_{1}(t)$ and you want to find another independent one, $y_{2}(t)$.
- Guess that $y_{2}(t)=v(t) y_{1}(t)$ for some as yet unknown $v(t)$. If you can find $v(t)$ this way, great. If not, gotta try something else.

Reduction of order

- You have one solution $y_{1}(t)$ and you want to find another independent one, $y_{2}(t)$.
- Guess that $y_{2}(t)=v(t) y_{1}(t)$ for some as yet unknown $v(t)$. If you can find $v(t)$ this way, great. If not, gotta try something else.
- Example - $y^{\prime \prime}+4 y^{\prime}+4 y=0$. Only one root to the characteristic equation, $\mathrm{r}=-2$, so we only get one solution that way: $y_{1}(t)=e^{-2 t}$.

Reduction of order

- You have one solution $y_{1}(t)$ and you want to find another independent one, $y_{2}(t)$.
- Guess that $y_{2}(t)=v(t) y_{1}(t)$ for some as yet unknown $v(t)$. If you can find $v(t)$ this way, great. If not, gotta try something else.
- Example - $y^{\prime \prime}+4 y^{\prime}+4 y=0$. Only one root to the characteristic equation, $\mathrm{r}=-2$, so we only get one solution that way: $y_{1}(t)=e^{-2 t}$.
- Use Reduction of order to find a second solution.

$$
y_{2}(t)=v(t) e^{-2 t}
$$

Reduction of order

- You have one solution $y_{1}(t)$ and you want to find another independent one, $y_{2}(t)$.
- Guess that $y_{2}(t)=v(t) y_{1}(t)$ for some as yet unknown $v(t)$. If you can find $v(t)$ this way, great. If not, gotta try something else.
- Example - $y^{\prime \prime}+4 y^{\prime}+4 y=0$. Only one root to the characteristic equation, $\mathrm{r}=-2$, so we only get one solution that way: $y_{1}(t)=e^{-2 t}$.
- Use Reduction of order to find a second solution.

$$
y_{2}(t)=v(t) e^{-2 t}
$$

- Heuristic explanation for exponential solutions and Reduction of order.

Reduction of order

For the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$, say you know $y_{1}(t)=e^{-2 t}$.

Reduction of order

For the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$, say you know $y_{1}(t)=e^{-2 t}$. Guess $y_{2}(t)=v(t) e^{-2 t}$.

Reduction of order

For the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$, say you know $y_{1}(t)=e^{-2 t}$.
Guess $y_{2}(t)=v(t) e^{-2 t}$.

$$
4 y_{2}(t) \stackrel{\Downarrow}{=} 4 v(t) e^{-2 t}
$$

Reduction of order

For the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$, say you know $y_{1}(t)=e^{-2 t}$.
Guess $y_{2}(t)=v(t) e^{-2 t} . \quad y_{2}^{\prime}(t)=v^{\prime}(t) e^{-2 t}-2 v(t) e^{-2 t}$

$$
4 y_{2}(t) \stackrel{\Downarrow}{=} 4 v(t) e^{-2 t}
$$

Reduction of order

For the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$, say you know $y_{1}(t)=e^{-2 t}$.
Guess $y_{2}(t)=v(t) e^{-2 t} . \quad y_{2}^{\prime}(t)=v^{\prime}(t) e^{-2 t}-2 v(t) e^{-2 t}$

$$
4 y_{2}(t) \stackrel{\Downarrow}{=} 4 v(t) e^{-2 t} \quad 4 y_{2}^{\prime}(t) \stackrel{\Downarrow}{=} 4 v^{\prime}(t) e^{-2 t}-8 v(t) e^{-2 t}
$$

Reduction of order

For the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$, say you know $y_{1}(t)=e^{-2 t}$. Guess $y_{2}(t)=v(t) e^{-2 t} . \quad y_{2}^{\prime}(t)=v^{\prime}(t) e^{-2 t}-2 v(t) e^{-2 t}$

$$
4 y_{2}(t) \stackrel{\Downarrow}{=} 4 v(t) e^{-2 t} \quad 4 y_{2}^{\prime}(t) \stackrel{\Downarrow}{=} 4 v^{\prime}(t) e^{-2 t}-8 v(t) e^{-2 t}
$$

$$
y_{2}^{\prime \prime}(t)=v^{\prime \prime}(t) e^{-2 t}-2 v^{\prime}(t) e^{-2 t}-2 v^{\prime}(t) e^{-2 t}+4 v(t) e^{-2 t}
$$

Reduction of order

For the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$, say you know $y_{1}(t)=e^{-2 t}$. Guess $y_{2}(t)=v(t) e^{-2 t} . \quad y_{2}^{\prime}(t)=v^{\prime}(t) e^{-2 t}-2 v(t) e^{-2 t}$

$$
4 y_{2}(t) \stackrel{\downarrow}{=} 4 v(t) e^{-2 t} \quad 4 y_{2}^{\prime}(t) \stackrel{\downarrow}{=} 4 v^{\prime}(t) e^{-2 t}-8 v(t) e^{-2 t}
$$

$$
\begin{gathered}
y_{2}^{\prime \prime}(t)=v^{\prime \prime}(t) e^{-2 t}-2 v^{\prime}(t) e^{-2 t}-2 v^{\prime}(t) e^{-2 t}+4 v(t) e^{-2 t} \\
y_{2}^{\prime \prime}(t)=v^{\prime \prime}(t) e^{-2 t}-4 v^{\prime}(t) e^{-2 t}+4 v(t) e^{-2 t}
\end{gathered}
$$

Reduction of order

For the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$, say you know $y_{1}(t)=e^{-2 t}$. Guess $y_{2}(t)=v(t) e^{-2 t} . \quad y_{2}^{\prime}(t)=v^{\prime}(t) e^{-2 t}-2 v(t) e^{-2 t}$

$$
4 y_{2}(t) \stackrel{y}{=} 4 v(t) e^{-2 t} \quad 4 y_{2}^{\prime}(t)=4 v^{\prime}(t) e^{-2 t}-8 v(t) e^{-2 t}
$$

$$
\begin{gathered}
y_{2}^{\prime \prime}(t)=v^{\prime \prime}(t) e^{-2 t}-2 v^{\prime}(t) e^{-2 t}-2 v^{\prime}(t) e^{-2 t}+4 v(t) e^{-2 t} \\
\mathbb{y} \\
\frac{y_{2}^{\prime \prime}(t)=v^{\prime \prime}(t) e^{-2 t}-4 v^{\prime}(t) e^{-2 t}+4 v(t) e^{-2 t}}{y_{2}^{\prime \prime}+4 y_{2}^{\prime}+4 y_{2}=}
\end{gathered}
$$

Reduction of order

For the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$, say you know $y_{1}(t)=e^{-2 t}$. Guess $y_{2}(t)=v(t) e^{-2 t} . \quad y_{2}^{\prime}(t)=v^{\prime}(t) e^{-2 t}-2 v(t) e^{-2 t}$

$$
4 y_{2}(t)=4 v(t) e^{-2 t} \quad 4 y_{2}^{\prime}(t)=4 v^{\prime}(t) e^{-2 t}-8 v(t) e^{-2 t}
$$

$$
\begin{gathered}
y_{2}^{\prime \prime}(t)=v^{\prime \prime}(t) e^{-2 t}-2 v^{\prime}(t) e^{-2 t}-2 v^{\prime}(t) e^{-2 t}+4 v(t) e^{-2 t} \\
\mathbb{y} \\
\frac{y_{2}^{\prime \prime}(t)=v^{\prime \prime}(t) e^{-2 t}-4 v^{\prime}(t) e^{-2 t}+4 v(t) e^{-2 t}}{y_{2}^{\prime \prime}+4 y_{2}^{\prime}+4 y_{2}=}
\end{gathered}
$$

Reduction of order

For the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$, say you know $y_{1}(t)=e^{-2 t}$. Guess $y_{2}(t)=v(t) e^{-2 t} . \quad y_{2}^{\prime}(t)=v^{\prime}(t) e^{-2 t}-2 v(t) e^{-2 t}$

$$
4 y_{2}(t)=4 v(t) e^{2 t} \quad 4 y_{2}^{\prime}(t)=4 v^{\prime}(t) e^{-2 t}-8 v(t) e^{-2 t}
$$

$$
\begin{gathered}
y_{2}^{\prime \prime}(t)=v^{\prime \prime}(t) e^{-2 t}-2 v^{\prime}(t) e^{-2 t}-2 v^{\prime}(t) e^{-2 t}+4 v(t) e^{-2 t} \\
\searrow \frac{y_{2}^{\prime \prime}(t)=v^{\prime \prime}(t) e^{-2 t}-4 v^{\prime}(t) e^{-2 t}+4 v(t) e^{-2 t}}{y_{2}^{\prime \prime}+4 y_{2}^{\prime}+4 y_{2}=}
\end{gathered}
$$

Reduction of order

For the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$, say you know $y_{1}(t)=e^{-2 t}$. Guess $y_{2}(t)=v(t) e^{-2 t} . \quad y_{2}^{\prime}(t)=v^{\prime}(t) e^{-2 t}-2 v(t) e^{-2 t}$

$$
4 y_{2}(t)=4 v(t) e^{2 t} \quad 4 y_{2}^{\prime}(t)=4 v^{\prime}(t) e^{-2 t}-8 v(t) e^{-2 t}
$$

$$
\begin{gathered}
y_{2}^{\prime \prime}(t)=v^{\prime \prime}(t) e^{-2 t}-2 v^{\prime}(t) e^{-2 t}-2 v^{\prime}(t) e^{-2 t}+4 v(t) e^{-2 t} \\
\searrow y_{2}^{\prime \prime}(t)=\frac{v^{\prime \prime}(t) e^{-2 t}-4 v^{\prime}(t) e^{-2 t}+4 v(t) e^{-2 t}}{y_{2}^{\prime \prime}+4 y_{2}^{\prime}+4 y_{2}=}
\end{gathered}
$$

Reduction of order

For the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$, say you know $y_{1}(t)=e^{-2 t}$. Guess $y_{2}(t)=v(t) e^{-2 t} . \quad y_{2}^{\prime}(t)=v^{\prime}(t) e^{-2 t}-2 v(t) e^{-2 t}$

$$
4 y_{2}(t)=4 v(t) e^{2 t} \quad 4 y_{2}^{\prime}(t)=4 v^{\prime}(t) e^{-2 t}-8 v(t) e^{-2 t}
$$

$$
\begin{gathered}
y_{2}^{\prime \prime}(t)=v^{\prime \prime}(t) e^{-2 t}-2 v^{\prime}(t) e^{-2 t}-2 v^{\prime}(t) e^{-2 t}+4 v(t) e^{-2 t} \\
\mathbb{\searrow} \frac{y_{2}^{\prime \prime}(t)=v^{\prime \prime}(t) e^{-2 t}-4 v^{\prime}(t) e^{-2 t}+4 v(t) e^{-2 t}}{y_{2}^{\prime \prime}+4 y_{2}^{\prime}+4 y_{2}=v^{\prime \prime} e^{-2 t}}
\end{gathered}
$$

Reduction of order

For the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$, say you know $y_{1}(t)=e^{-2 t}$. Guess $y_{2}(t)=v(t) e^{-2 t} . \quad y_{2}^{\prime}(t)=v^{\prime}(t) e^{-2 t}-2 v(t) e^{-2 t}$

$$
4 y_{2}(t)=4 v(t) e^{2 t} \quad 4 y_{2}^{\prime}(t)=4 v^{\prime}(t) e^{-2 t}-8 v(t) e^{-2 t}
$$

$$
\begin{gathered}
y_{2}^{\prime \prime}(t)=v^{\prime \prime}(t) e^{-2 t}-2 v^{\prime}(t) e^{-2 t}-2 v^{\prime}(t) e^{-2 t}+4 v(t) e^{-2 t} \\
\searrow \frac{y_{2}^{\prime \prime}(t)=v^{\prime \prime}(t) e^{-2 t}-4 v^{\prime}(t) e^{-2 t}+4 v(t) e^{2 t}}{0=y_{2}^{\prime \prime}+4 y_{2}^{\prime}+4 y_{2}=v^{\prime \prime} e^{-2 t}}
\end{gathered}
$$

Reduction of order

For the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$, say you know $y_{1}(t)=e^{-2 t}$. Guess $y_{2}(t)=v(t) e^{-2 t} . \quad y_{2}^{\prime}(t)=v^{\prime}(t) e^{-2 t}-2 v(t) e^{-2 t}$

$$
4 y_{2}(t) \stackrel{\Downarrow}{=} 4 v(t) e^{-2 t} \quad 4 y_{2}^{\prime}(t) \stackrel{\Downarrow}{=} 4 v^{\prime}(t) e^{-2 t}-8 v(t) e^{-2 t}
$$

$$
\begin{gathered}
y_{2}^{\prime \prime}(t)=v^{\prime \prime}(t) e^{-2 t}-2 v^{\prime}(t) e^{-2 t}-2 v^{\prime}(t) e^{-2 t}+4 v(t) e^{-2 t} \\
\searrow y_{2}^{\prime \prime}(t)=v^{\prime \prime}(t) e^{-2 t}-4 v^{\prime}(t) e^{-2 t}+4 v(t) e^{2 t} \\
0=y_{2}^{\prime \prime}+4 y_{2}^{\prime}+4 y_{2}=v^{\prime \prime} e^{-2 t} \\
v^{\prime \prime}=0
\end{gathered}
$$

Reduction of order

For the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$, say you know $y_{1}(t)=e^{-2 t}$. Guess $y_{2}(t)=v(t) e^{-2 t} . \quad y_{2}^{\prime}(t)=v^{\prime}(t) e^{-2 t}-2 v(t) e^{-2 t}$

$$
4 y_{2}(t) \stackrel{\Downarrow}{=} 4 v(t) e^{-2 t} \quad 4 y_{2}^{\prime}(t) \stackrel{\Downarrow}{=} 4 v^{\prime}(t) e^{-2 t}-8 v(t) e^{-2 t}
$$

$$
\begin{gathered}
y_{2}^{\prime \prime}(t)=v^{\prime \prime}(t) e^{-2 t}-2 v^{\prime}(t) e^{-2 t}-2 v^{\prime}(t) e^{-2 t}+4 v(t) e^{-2 t} \\
\mathbb{\searrow} \\
0=y_{2}^{\prime \prime}(t)=4 v_{2}^{\prime \prime}(t) e^{-2 t}-4 v^{\prime}(t) e^{-2 t}+4 v(t) e^{-2 t} \\
v^{\prime \prime}=0 \Rightarrow v^{\prime \prime} e^{-2 t} \\
0 v^{\prime}=C_{1}
\end{gathered}
$$

Reduction of order

For the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$, say you know $y_{1}(t)=e^{-2 t}$. Guess $y_{2}(t)=v(t) e^{-2 t} . \quad y_{2}^{\prime}(t)=v^{\prime}(t) e^{-2 t}-2 v(t) e^{-2 t}$

$$
4 y_{2}(t) \stackrel{\Downarrow}{=} 4 v(t) e^{-2 t} \quad 4 y_{2}^{\prime}(t) \stackrel{\Downarrow}{=} 4 v^{\prime}(t) e^{-2 t}-8 v(t) e^{-2 t}
$$

$$
\begin{gathered}
y_{2}^{\prime \prime}(t)=v^{\prime \prime}(t) e^{-2 t}-2 v^{\prime}(t) e^{-2 t}-2 v^{\prime}(t) e^{-2 t}+4 v(t) e^{-2 t} \\
\searrow y_{2}^{\prime \prime}(t)=v^{\prime \prime}(t) e^{-2 t}-4 v^{\prime}(t) e^{-2 t}+4 v(t) e^{-2 t} \\
0=y_{2}^{\prime \prime}+4 y_{2}^{\prime}+4 y_{2}=v^{\prime \prime} e^{-2 t} \\
v^{\prime \prime}=0 \Rightarrow v^{\prime}=C_{1} \Rightarrow v(t)=C_{1} t+C_{2}
\end{gathered}
$$

Reduction of order

For the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$, say you know $y_{1}(t)=e^{-2 t}$.
Guess $y_{2}(t)=v(t) e^{-2 t} \quad$ (where $\quad v(t)=C_{1} t+C_{2} \quad$).

Reduction of order

For the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$, say you know $y_{1}(t)=e^{-2 t}$. Guess $y_{2}(t)=v(t) e^{-2 t} \quad$ (where $\quad v(t)=C_{1} t+C_{2} \quad$).

$$
=\left(C_{1} t+C_{2}\right) e^{-2 t}
$$

Reduction of order

For the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$, say you know $y_{1}(t)=e^{-2 t}$. Guess $y_{2}(t)=v(t) e^{-2 t} \quad$ (where $\quad v(t)=C_{1} t+C_{2} \quad$).

$$
\begin{aligned}
& =\left(C_{1} t+C_{2}\right) e^{-2 t} \\
& =C_{1} t e^{-2 t}+C_{2} e^{-2 t}
\end{aligned}
$$

Reduction of order

For the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$, say you know $y_{1}(t)=e^{-2 t}$. Guess $y_{2}(t)=v(t) e^{-2 t} \quad$ (where $\quad v(t)=C_{1} t+C_{2} \quad$).

$$
\begin{aligned}
& =\left(C_{1} t+C_{2}\right) e^{-2 t} \\
& =C_{1} t e^{-2 t}+C \underbrace{e^{-2 t}}_{y_{1}(t)}
\end{aligned}
$$

Reduction of order

For the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$, say you know $y_{1}(t)=e^{-2 t}$. Guess $y_{2}(t)=v(t) e^{-2 t} \quad$ (where $\quad v(t)=C_{1} t+C_{2} \quad$).

$$
\begin{aligned}
& =\left(C_{1} t+C_{2}\right) e^{-2 t} \\
& =C \underbrace{+e^{-2 t}}_{y_{2}(t)}+C e_{y_{1}(t)}^{e^{-2 t}}
\end{aligned}
$$

Reduction of order

For the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$, say you know $y_{1}(t)=e^{-2 t}$.
Guess $y_{2}(t)=v(t) e^{-2 t} \quad$ (where $\quad v(t)=C_{1} t+C_{2} \quad$).

$$
\begin{aligned}
& =\left(C_{1} t+C_{2}\right) e^{-2 t} \\
y(t) & =C \underbrace{t e^{-2 t}}_{y_{2}(t)}+C \underbrace{e^{-2 t}}_{y_{1}(t)}
\end{aligned}
$$

Reduction of order

For the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$, say you know $y_{1}(t)=e^{-2 t}$.
Guess $y_{2}(t)=v(t) e^{-2 t} \quad$ (where $\quad v(t)=C_{1} t+C_{2} \quad$).

$$
\begin{aligned}
& =\left(C_{1} t+C_{2}\right) e^{-2 t} \\
y(t) & =C \underbrace{t e^{-2 t}}_{y_{2}(t)}+C e_{y_{1}(t)}^{e^{-2 t}}
\end{aligned}
$$

Is this the general solution? Calculate the Wronskian:

Reduction of order

For the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$, say you know $y_{1}(t)=e^{-2 t}$.
Guess $y_{2}(t)=v(t) e^{-2 t} \quad$ (where $\quad v(t)=C_{1} t+C_{2} \quad$).

$$
\begin{aligned}
& =\left(C_{1} t+C_{2}\right) e^{-2 t} \\
y(t) & =C \underbrace{t e^{-2 t}}_{y_{2}(t)}+C e_{y_{1}(t)}^{e^{-2 t}}
\end{aligned}
$$

Is this the general solution? Calculate the Wronskian:
$W\left(e^{-2 t}, t e^{-2 t}\right)(t)$

Reduction of order

For the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$, say you know $y_{1}(t)=e^{-2 t}$.
Guess $y_{2}(t)=v(t) e^{-2 t} \quad$ (where $\quad v(t)=C_{1} t+C_{2} \quad$).

$$
\begin{aligned}
& =\left(C_{1} t+C_{2}\right) e^{-2 t} \\
y(t) & =C \underbrace{t e^{-2 t}}_{y_{2}(t)}+C e_{y_{1}(t)}^{e^{-2 t}}
\end{aligned}
$$

Is this the general solution? Calculate the Wronskian:
$W\left(e^{-2 t}, t e^{-2 t}\right)(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)$

Reduction of order

For the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$, say you know $y_{1}(t)=e^{-2 t}$.
Guess $y_{2}(t)=v(t) e^{-2 t} \quad$ (where $\quad v(t)=C_{1} t+C_{2} \quad$).

$$
\begin{aligned}
& =\left(C_{1} t+C_{2}\right) e^{-2 t} \\
y(t) & =C \underbrace{t e^{-2 t}}_{y_{2}(t)}+C e_{y_{1}(t)}^{e^{-2 t}}
\end{aligned}
$$

Is this the general solution? Calculate the Wronskian:
$W\left(e^{-2 t}, t e^{-2 t}\right)(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)=e^{-4 t}$

Reduction of order

For the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$, say you know $y_{1}(t)=e^{-2 t}$.
Guess $y_{2}(t)=v(t) e^{-2 t} \quad$ (where $\quad v(t)=C_{1} t+C_{2} \quad$).

$$
\begin{aligned}
& =\left(C_{1} t+C_{2}\right) e^{-2 t} \\
y(t) & =C \underbrace{t e^{-2 t}}_{y_{2}(t)}+C e_{y_{1}(t)}^{e^{-2 t}}
\end{aligned}
$$

Is this the general solution? Calculate the Wronskian:
$W\left(e^{-2 t}, t e^{-2 t}\right)(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)=e^{-4 t} \neq 0$

Reduction of order

For the equation $y^{\prime \prime}+4 y^{\prime}+4 y=0$, say you know $y_{1}(t)=e^{-2 t}$.
Guess $y_{2}(t)=v(t) e^{-2 t} \quad\left(\right.$ where $\quad v(t)=C_{1} t+C_{2} \quad$).

$$
\begin{aligned}
& =\left(C_{1} t+C_{2}\right) e^{-2 t} \\
y(t) & =C \underbrace{t e^{-2 t}}_{y_{2}(t)}+C \underbrace{e^{-2 t}}_{y_{1}(t)}
\end{aligned}
$$

Is this the general solution? Calculate the Wronskian:
$W\left(e^{-2 t}, t e^{-2 t}\right)(t)=y_{1}(t) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(t)=e^{-4 t} \neq 0$
So yes!

Summary

- For the general case, $a y^{\prime \prime}+b y^{\prime}+c y=0$, by assuming $y(t)=e^{r t}$ we get the characteristic equation:

$$
a r^{2}+b r+c=0
$$

Summary

- For the general case, $a y^{\prime \prime}+b y^{\prime}+c y=0$, by assuming $y(t)=e^{r t}$ we get the characteristic equation:

$$
a r^{2}+b r+c=0
$$

- There are three cases.

Summary

- For the general case, $a y^{\prime \prime}+b y^{\prime}+c y=0$, by assuming $y(t)=e^{r t}$ we get the characteristic equation:

$$
a r^{2}+b r+c=0
$$

- There are three cases.
I. Two distinct real roots: $b^{2}-4 a c>0$. $\left(r_{1}, r_{2}\right)$

Summary

- For the general case, $a y^{\prime \prime}+b y^{\prime}+c y=0$, by assuming $y(t)=e^{r t}$ we get the characteristic equation:

$$
a r^{2}+b r+c=0
$$

- There are three cases.
I. Two distinct real roots: $\mathrm{b}^{2}-4 \mathrm{ac}>0$. $\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right)$

$$
y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}
$$

Summary

- For the general case, $a y^{\prime \prime}+b y^{\prime}+c y=0$, by assuming $y(t)=e^{r t}$ we get the characteristic equation:

$$
a r^{2}+b r+c=0
$$

- There are three cases.
I. Two distinct real roots: $\mathrm{b}^{2}-4 \mathrm{ac}>0$. $\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right)$

$$
y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}
$$

II.A repeated real root: $b^{2}-4 a c=0 .(r)$

Summary

- For the general case, $a y^{\prime \prime}+b y^{\prime}+c y=0$, by assuming $y(t)=e^{r t}$ we get the characteristic equation:

$$
a r^{2}+b r+c=0
$$

- There are three cases.
I. Two distinct real roots: $\mathrm{b}^{2}-4 \mathrm{ac}>0$. $\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right)$

$$
y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}
$$

II.A repeated real root: $\mathrm{b}^{2}-4 \mathrm{ac}=0 .(r)$

$$
y(t)=C_{1} e^{r t}+C_{2} t e^{r t}
$$

Summary

- For the general case, $a y^{\prime \prime}+b y^{\prime}+c y=0$, by assuming $y(t)=e^{r t}$ we get the characteristic equation:

$$
a r^{2}+b r+c=0
$$

- There are three cases.
I. Two distinct real roots: $\mathrm{b}^{2}-4 \mathrm{ac}>0$. $\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right)$

$$
y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}
$$

II.A repeated real root: $\mathrm{b}^{2}-4 \mathrm{ac}=0 .(r)$

$$
y(t)=C_{1} e^{r t}+C_{2} t e^{r t}
$$

III.Two complex roots: $b^{2}-4 a c<0$. ($\left.r_{1,2}=a \pm i \beta\right)$

Summary

- For the general case, $a y^{\prime \prime}+b y^{\prime}+c y=0$, by assuming $y(t)=e^{r t}$ we get the characteristic equation:

$$
a r^{2}+b r+c=0
$$

- There are three cases.
I. Two distinct real roots: $\mathrm{b}^{2}-4 \mathrm{ac}>0$. $\left(\mathrm{r}_{1}, \mathrm{r}_{2}\right)$

$$
y(t)=C_{1} e^{r_{1} t}+C_{2} e^{r_{2} t}
$$

II.A repeated real root: $\mathrm{b}^{2}-4 \mathrm{ac}=0 .(r)$

$$
y(t)=C_{1} e^{r t}+C_{2} t e^{r t}
$$

III.Two complex roots: $b^{2}-4 a c<0 .\left(r_{1,2}=a \pm i \beta\right)$

$$
y=e^{\alpha t}\left(C_{1} \cos (\beta t)+C_{2} \sin (\beta t)\right)
$$

Second order, linear, constant coeff, homogeneous

- Find the general solution to the equation

$$
y^{\prime \prime}-6 y^{\prime}+8 y=0
$$

(A) $y(t)=C_{1} e^{-2 t}+C_{2} e^{-4 t}$
(B) $y(t)=C_{1} e^{2 t}+C_{2} e^{4 t}$
(C) $y(t)=e^{2 t}\left(C_{1} \cos (4 t)+C_{2} \sin (4 t)\right)$
(D) $y(t)=e^{-2 t}\left(C_{1} \cos (4 t)+C_{2} \sin (4 t)\right)$
(E) $y(t)=C_{1} e^{2 t}+C_{2} t e^{4 t}$

Second order, linear, constant coeff, homogeneous

- Find the general solution to the equation

$$
y^{\prime \prime}-6 y^{\prime}+8 y=0
$$

$$
\text { (A) } y(t)=C_{1} e^{-2 t}+C_{2} e^{-4 t}
$$

$\hat{\Delta}$ (B) $y(t)=C_{1} e^{2 t}+C_{2} e^{4 t}$
(C) $y(t)=e^{2 t}\left(C_{1} \cos (4 t)+C_{2} \sin (4 t)\right)$
(D) $y(t)=e^{-2 t}\left(C_{1} \cos (4 t)+C_{2} \sin (4 t)\right)$
(E) $y(t)=C_{1} e^{2 t}+C_{2} t e^{4 t}$

Second order, linear, constant coeff, homogeneous

- Find the general solution to the equation

$$
y^{\prime \prime}-6 y^{\prime}+9 y=0
$$

(A) $y(t)=C_{1} e^{3 t}$
(B) $y(t)=C_{1} e^{3 t}+C_{2} e^{3 t}$
(C) $y(t)=C_{1} e^{3 t}+C_{2} e^{-3 t}$
(D) $y(t)=C_{1} e^{3 t}+C_{2} t e^{3 t}$
(E) $y(t)=C_{1} e^{3 t}+C_{2} v(t) e^{3 t}$

Second order, linear, constant coeff, homogeneous

- Find the general solution to the equation

$$
y^{\prime \prime}-6 y^{\prime}+9 y=0
$$

(A) $y(t)=C_{1} e^{3 t}$
(B) $y(t)=C_{1} e^{3 t}+C_{2} e^{3 t}$
(C) $y(t)=C_{1} e^{3 t}+C_{2} e^{-3 t}$
(D) $y(t)=C_{1} e^{3 t}+C_{2} t e^{3 t}$
(E) $y(t)=C_{1} e^{3 t}+C_{2} v(t) e^{3 t}$

Second order, linear, constant coeff, homogeneous

- Find the general solution to the equation

$$
y^{\prime \prime}-6 y^{\prime}+10 y=0
$$

(A) $y(t)=C_{1} e^{3 t}+C_{2} e^{t}$
(B) $y(t)=C_{1} e^{3 t}+C_{2} e^{-t}$
(C) $y(t)=C_{1} \cos (3 t)+C_{2} \sin (3 t)$
(D) $y(t)=e^{t}\left(C_{1} \cos (3 t)+C_{2} \sin (3 t)\right)$
(E) $y(t)=e^{3 t}\left(C_{1} \cos (t)+C_{2} \sin (t)\right)$

Second order, linear, constant coeff, homogeneous

- Find the general solution to the equation

$$
y^{\prime \prime}-6 y^{\prime}+10 y=0
$$

(A) $y(t)=C_{1} e^{3 t}+C_{2} e^{t}$
(B) $y(t)=C_{1} e^{3 t}+C_{2} e^{-t}$
(C) $y(t)=C_{1} \cos (3 t)+C_{2} \sin (3 t)$
(D) $y(t)=e^{t}\left(C_{1} \cos (3 t)+C_{2} \sin (3 t)\right)$
(E) $y(t)=e^{3 t}\left(C_{1} \cos (t)+C_{2} \sin (t)\right)$

