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Complex roots

• To be sure this is a general solution, we must check the Wronskian:

W (y1, y2)(t) = y1(t)y0
2(t)� y0

1(t)y2(t)Recall:

W (e�t
cos(�t), e�t

sin(�t))(t) =

(for you to fill in later - is it non-zero?)
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Complex roots

• Example: Find the (real valued) general solution to the equation


• Step 1: Assume                      , plug this into the equation and find 
values of r that make it work.

y(t) = ert

(A) r1 = 1 + 2i, r2 = 1 - 2i 


(B) r1 = -1 + 2i, r2 = -1 - 2i


(C) r1 = 1 - 2i, r2 = -1 + 2i 

(A) r1 = 2 + 4i, r2 = 2 - 4i 


(B) r1 = -2 + 4i, r2 = -2 - 4i

y00 + 2y0 + 5y = 0
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• Example: Find the (real valued) general solution to the equation


• Step 2: Real part of r goes in the exponent, imaginary part goes in the 
trig functions.
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ay00 + by0 + cy = 0 y(t) = ert

ar2 + br + c = 0
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(C1 cos(�t) + C2 sin(�t))
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Second order, linear, constant coeff, homogeneous 

• Find the general solution to the equation


(A)  


(B) 


(C) 


(D) 


(E) 

y00 � 6y0 + 8y = 0

y(t) = C1e
2t + C2e

4t

y(t) = C1e
�2t + C2e

�4t

y(t) = e2t
(C1 cos(4t) + C2 sin(4t))

y(t) = e�2t
(C1 cos(4t) + C2 sin(4t))

y(t) = C1e
2t + C2te

4t
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