- For the general case, ay'' + by' + cy = 0, by assuming $y(t) = e^{rt}$

we get the characteristic equation:

$$ar^2 + br + c = 0$$

- For the general case, ay'' + by' + cy = 0, by assuming $y(t) = e^{rt}$

we get the characteristic equation:

$$ar^2 + br + c = 0$$

$$r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

- For the general case, ay'' + by' + cy = 0, by assuming $y(t) = e^{rt}$

we get the characteristic equation:

$$ar^2 + br + c = 0$$

$$r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \\ = \frac{-b \pm \sqrt{-1}\sqrt{4ac - b^2}}{2a}$$

• For the general case, ay'' + by' + cy = 0, by assuming $y(t) = e^{rt}$

we get the characteristic equation:

$$ar^2 + br + c = 0$$

$$r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$= \frac{-b \pm \sqrt{-1}\sqrt{4ac - b^2}}{2a}$$
$$= \frac{-b \pm i\sqrt{4ac - b^2}}{2a}$$

• For the general case, ay'' + by' + cy = 0, by assuming $y(t) = e^{rt}$

we get the characteristic equation:

$$ar^2 + br + c = 0$$

$$r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$= \frac{-b \pm \sqrt{-1}\sqrt{4ac - b^2}}{2a}$$
$$= \frac{-b \pm i\sqrt{4ac - b^2}}{2a} = \frac{-b}{2a} \pm \frac{\sqrt{4ac - b^2}}{2a}i$$

• For the general case, ay'' + by' + cy = 0, by assuming $y(t) = e^{rt}$

we get the characteristic equation:

$$ar^2 + br + c = 0$$

$$r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$= \frac{-b \pm \sqrt{-1}\sqrt{4ac - b^2}}{2a}$$
$$= \frac{-b \pm i\sqrt{4ac - b^2}}{2a} = \frac{-b}{2a} \pm \frac{\sqrt{4ac - b^2}}{2a}i$$
$$= \alpha \pm \beta i$$

$$y_1(t) = e^{(\alpha + \beta i)t}$$

$$y_1(t) = e^{(\alpha + \beta i)t}$$
$$= e^{\alpha t} e^{i\beta t}$$

$$y_1(t) = e^{(\alpha + \beta i)t}$$
$$= e^{\alpha t} e^{i\beta t}$$
$$= e^{\alpha t} (\cos(\beta t) + i\sin(\beta t))$$

$$y_1(t) = e^{(\alpha + \beta i)t}$$

= $e^{\alpha t} e^{i\beta t}$
= $e^{\alpha t} (\cos(\beta t) + i\sin(\beta t))$
 $y_2(t) = e^{(\alpha - \beta i)t}$

$$y_1(t) = e^{(\alpha + \beta i)t}$$

= $e^{\alpha t} e^{i\beta t}$
= $e^{\alpha t} (\cos(\beta t) + i\sin(\beta t))$
$$y_2(t) = e^{(\alpha - \beta i)t}$$

= $e^{\alpha t} e^{-i\beta t}$

$$y_1(t) = e^{(\alpha + \beta i)t}$$

= $e^{\alpha t} e^{i\beta t}$
= $e^{\alpha t} (\cos(\beta t) + i\sin(\beta t))$
$$y_2(t) = e^{(\alpha - \beta i)t}$$

= $e^{\alpha t} e^{-i\beta t}$
= $e^{\alpha t} (\cos(-\beta t) + i\sin(-\beta t))$

$$y_{1}(t) = e^{(\alpha + \beta i)t}$$

$$= e^{\alpha t} e^{i\beta t}$$

$$= e^{\alpha t} (\cos(\beta t) + i\sin(\beta t))$$

$$y_{2}(t) = e^{(\alpha - \beta i)t}$$

$$= e^{\alpha t} e^{-i\beta t}$$

$$= e^{\alpha t} (\cos(-\beta t) + i\sin(-\beta t))$$

$$= e^{\alpha t} (\cos(\beta t) - i\sin(\beta t))$$

$$y_1(t) = e^{\alpha t} (\cos(\beta t) + i \sin(\beta t))$$
$$y_2(t) = e^{\alpha t} (\cos(\beta t) - i \sin(\beta t))$$

 Complex roots to the characteristic equation mean complex valued solution to the ODE:

$$y_1(t) = e^{\alpha t} (\cos(\beta t) + i \sin(\beta t))$$
$$y_2(t) = e^{\alpha t} (\cos(\beta t) - i \sin(\beta t))$$

 Instead of using these to form the general solution, let's use them to find two real valued solutions:

 Complex roots to the characteristic equation mean complex valued solution to the ODE:

$$y_1(t) = e^{\alpha t} (\cos(\beta t) + i \sin(\beta t))$$
$$y_2(t) = e^{\alpha t} (\cos(\beta t) - i \sin(\beta t))$$

 Instead of using these to form the general solution, let's use them to find two real valued solutions:

$$\frac{1}{2}y_1(t) + \frac{1}{2}y_2(t) = e^{\alpha t}\cos(\beta t)$$

 Complex roots to the characteristic equation mean complex valued solution to the ODE:

$$y_1(t) = e^{\alpha t} (\cos(\beta t) + i \sin(\beta t))$$
$$y_2(t) = e^{\alpha t} (\cos(\beta t) - i \sin(\beta t))$$

 Instead of using these to form the general solution, let's use them to find two real valued solutions:

$$\frac{1}{2}y_1(t) + \frac{1}{2}y_2(t) = e^{\alpha t}\cos(\beta t)$$
$$\frac{1}{2i}y_1(t) - \frac{1}{2i}y_2(t) = e^{\alpha t}\sin(\beta t)$$

 Complex roots to the characteristic equation mean complex valued solution to the ODE:

$$y_1(t) = e^{\alpha t} (\cos(\beta t) + i \sin(\beta t))$$
$$y_2(t) = e^{\alpha t} (\cos(\beta t) - i \sin(\beta t))$$

 Instead of using these to form the general solution, let's use them to find two real valued solutions:

$$\frac{1}{2}y_1(t) + \frac{1}{2}y_2(t) = e^{\alpha t}\cos(\beta t)$$
$$\frac{1}{2i}y_1(t) - \frac{1}{2i}y_2(t) = e^{\alpha t}\sin(\beta t)$$

• General solution:

$$y(t) = C_1 e^{\alpha t} \cos(\beta t) + C_2 e^{\alpha t} \sin(\beta t)$$

• To be sure this is a general solution, we must check the Wronskian:

 $W(e^{\alpha t}\cos(\beta t), e^{\alpha t}\sin(\beta t))(t) =$

(for you to fill in later - is it non-zero?)

Recall:
$$W(y_1, y_2)(t) = y_1(t)y_2'(t) - y_1'(t)y_2(t)$$

• Example: Find the (real valued) general solution to the equation

$$y'' + 2y' + 5y = 0$$

• Step 1: Assume $y(t) = e^{rt}$, plug this into the equation and find values of r that make it work.

(A)
$$r_1 = 1 + 2i$$
, $r_2 = 1 - 2i$
(A) $r_1 = 2 + 4i$, $r_2 = 2 - 4i$
(B) $r_1 = -1 + 2i$, $r_2 = -1 - 2i$
(B) $r_1 = -2 + 4i$, $r_2 = -2 - 4i$
(C) $r_1 = 1 - 2i$, $r_2 = -1 + 2i$

• Example: Find the (real valued) general solution to the equation

$$y'' + 2y' + 5y = 0$$

• Step 1: Assume $y(t) = e^{rt}$, plug this into the equation and find values of r that make it work.

(A)
$$r_1 = 1 + 2i$$
, $r_2 = 1 - 2i$
(A) $r_1 = 2 + 4i$, $r_2 = 2 - 4i$
(B) $r_1 = -1 + 2i$, $r_2 = -1 - 2i$
(B) $r_1 = -2 + 4i$, $r_2 = -2 - 4i$
(C) $r_1 = 1 - 2i$, $r_2 = -1 + 2i$

• Example: Find the (real valued) general solution to the equation

$$y'' + 2y' + 5y = 0$$

• Step 2: Real part of r goes in the exponent, imaginary part goes in the trig functions.

(A)
$$y(t) = e^{-t}(C_1 \cos(2t) + C_2 \sin(2t))$$

(B) $y(t) = C_1 e^{(-1+2i)t} + C_2 e^{(-1-2i)t}$
(C) $y(t) = C_1 \cos(2t) + C_2 \sin(2t) + C_3 e^{-t}$
(D) $y(t) = C_1 \cos(2t) + C_2 \sin(2t)$

• Example: Find the (real valued) general solution to the equation

$$y'' + 2y' + 5y = 0$$

• Step 2: Real part of r goes in the exponent, imaginary part goes in the trig functions.

$$(A) \quad y(t) = e^{-t} (C_1 \cos(2t) + C_2 \sin(2t))$$

$$(B) \quad y(t) = C_1 e^{(-1+2i)t} + C_2 e^{(-1-2i)t}$$

$$(C) \quad y(t) = C_1 \cos(2t) + C_2 \sin(2t) + C_3 e^{-t}$$

$$(D) \quad y(t) = C_1 \cos(2t) + C_2 \sin(2t)$$

Example: Find the solution to the IVP

$$y'' + 2y' + 5y = 0, y(0) = 1, y'(0) = 0$$

• General solution: $y(t) = e^{-t}(C_1\cos(2t) + C_2\sin(2t))$

(A)
$$y(t) = e^{-t} \left(2\cos(2t) + \sin(2t) \right)$$

(B) $y(t) = e^{-t} \left(\cos(2t) - \frac{1}{2}\sin(2t) \right)$
(C) $y(t) = \frac{1}{2}e^{-t} \left(2\cos(2t) - \sin(2t) \right)$
(D) $y(t) = \frac{1}{2}e^{-t} \left(2\cos(2t) + \sin(2t) \right)$

Example: Find the solution to the IVP

$$y'' + 2y' + 5y = 0, y(0) = 1, y'(0) = 0$$

• General solution: $y(t) = e^{-t}(C_1\cos(2t) + C_2\sin(2t))$

(A)
$$y(t) = e^{-t} \left(2\cos(2t) + \sin(2t) \right)$$

(B) $y(t) = e^{-t} \left(\cos(2t) - \frac{1}{2}\sin(2t) \right)$
(C) $y(t) = \frac{1}{2}e^{-t} \left(2\cos(2t) - \sin(2t) \right)$
(D) $y(t) = \frac{1}{2}e^{-t} \left(2\cos(2t) + \sin(2t) \right)$

- For the general case, $ay^{\prime\prime}+by^{\prime}+cy=0$, by assuming $\,y(t)=e^{rt}$

we get the characteristic equation:

$$ar^2 + br + c = 0$$

- For the general case, $ay^{\prime\prime}+by^{\prime}+cy=0$, by assuming $\,y(t)=e^{rt}$

we get the characteristic equation:

$$ar^2 + br + c = 0$$

• There are three cases.

I. Two distinct real roots: $b^2 - 4ac > 0$. $(r_1 \neq r_2)$

II.A repeated real root: $b^2 - 4ac = 0$.

III.Two complex roots: $b^2 - 4ac < 0$.

- For the general case, $ay^{\prime\prime} + by^{\prime} + cy = 0$, by assuming $y(t) = e^{rt}$

we get the characteristic equation:

$$ar^2 + br + c = 0$$

• There are three cases.

I. Two distinct real roots: $b^2 - 4ac > 0$. $(r_1 \neq r_2)$

II.A repeated real root: $b^2 - 4ac = 0$.

III.Two complex roots: $b^2 - 4ac < 0$.

• For case ii ($r_1 = r_2 = r$), we need another independent solution!

- For the general case, $ay^{\prime\prime}+by^{\prime}+cy=0$, by assuming $\,y(t)=e^{rt}$

we get the characteristic equation:

$$ar^2 + br + c = 0$$

• There are three cases.

I. Two distinct real roots: $b^2 - 4ac > 0$. $(r_1 \neq r_2)$

II.A repeated real root: $b^2 - 4ac = 0$.

III.Two complex roots: $b^2 - 4ac < 0$.

- For case ii ($r_1 = r_2 = r$), we need another independent solution!
- Reduction of order a method for guessing another solution.

• You have one solution $y_1(t)$ and you want to find another independent one, $y_2(t)$.

- You have one solution $y_1(t)$ and you want to find another independent one, $y_2(t)$.
- Guess that $y_2(t) = v(t)y_1(t)$ for some as yet unknown v(t). If you can find v(t) this way, great. If not, gotta try something else.

- You have one solution $y_1(t)$ and you want to find another independent one, $y_2(t)$.
- Guess that $y_2(t) = v(t)y_1(t)$ for some as yet unknown v(t). If you can find v(t) this way, great. If not, gotta try something else.
- Example y'' + 4y' + 4y = 0. Only one root to the characteristic equation, r=-2, so we only get one solution that way: $y_1(t) = e^{-2t}$.

- You have one solution $y_1(t)$ and you want to find another independent one, $y_2(t)$.
- Guess that $y_2(t) = v(t)y_1(t)$ for some as yet unknown v(t). If you can find v(t) this way, great. If not, gotta try something else.
- Example y'' + 4y' + 4y = 0. Only one root to the characteristic equation, r=-2, so we only get one solution that way: $y_1(t) = e^{-2t}$.
- Use Reduction of order to find a second solution.

$$y_2(t) = v(t)e^{-2t}$$

- You have one solution $y_1(t)$ and you want to find another independent one, $y_2(t)$.
- Guess that $y_2(t) = v(t)y_1(t)$ for some as yet unknown v(t). If you can find v(t) this way, great. If not, gotta try something else.
- Example y'' + 4y' + 4y = 0. Only one root to the characteristic equation, r=-2, so we only get one solution that way: $y_1(t) = e^{-2t}$.
- Use Reduction of order to find a second solution.

$$y_2(t) = v(t)e^{-2t}$$

Heuristic explanation for exponential solutions and Reduction of order.

For the equation y'' + 4y' + 4y = 0, say you know $y_1(t) = e^{-2t}$.

For the equation y'' + 4y' + 4y = 0, say you know $y_1(t) = e^{-2t}$.

Guess $y_2(t) = v(t)e^{-2t}$.

For the equation y'' + 4y' + 4y = 0, say you know $y_1(t) = e^{-2t}$. Guess $y_2(t) = v(t)e^{-2t}$. $y'_2(t) = v'(t)e^{-2t} - 2v(t)e^{-2t}$ \downarrow

$$4y_2(t) \stackrel{\checkmark}{=} 4v(t)e^{-2t}$$

$$y_2''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$\bigotimes y_2''(t) = v''(t)e^{-2t} - 4v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2''(t) = v''(t)e^{-2t} - 4v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2'' + 4y_2' + 4y_2 =$$

$$y_2''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2''(t) = v''(t)e^{-2t} - 4v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2'' + 4y_2' + 4y_2 =$$

$$y_2''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2''(t) = v''(t)e^{-2t} - 4v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2'' + 4y_2' + 4y_2 =$$

$$y_2''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$
$$y_2''(t) = v''(t)e^{-2t} - 4v'(t)e^{-2t} + 4v(t)e^{-2t}$$
$$y_2'' + 4y_2' + 4y_2 =$$

$$y_2''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2''(t) = v''(t)e^{-2t} - 4v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2'' + 4y_2' + 4y_2 = v''e^{-2t}$$

$$y_2''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2''(t) = v''(t)e^{-2t} - 4v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$0 = y_2'' + 4y_2' + 4y_2 = v''e^{-2t}$$

v'' = 0

$$y_2''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2''(t) = v''(t)e^{-2t} - 4v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$0 = y_2'' + 4y_2' + 4y_2 = v''e^{-2t}$$

$$y_{2}''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_{2}''(t) = v''(t)e^{-2t} - 4v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$0 = y_{2}'' + 4y_{2}' + 4y_{2} = v''e^{-2t}$$

$$v'' = 0 \implies v' = C_{1}$$

$$y_{2}''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_{2}''(t) = v''(t)e^{-2t} - 4v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$0 = y_{2}'' + 4y_{2}' + 4y_{2} = v''e^{-2t}$$

$$v'' = 0 \implies v' = C_{1} \implies v(t) = C_{1}t + C_{2}$$

For the equation y'' + 4y' + 4y = 0, say you know $y_1(t) = e^{-2t}$.

Guess $y_2(t) = v(t)e^{-2t}$ (where $v(t) = C_1t + C_2$).

For the equation y'' + 4y' + 4y = 0, say you know $y_1(t) = e^{-2t}$. Guess $y_2(t) = v(t)e^{-2t}$ (where $v(t) = C_1t + C_2$). $= (C_1t + C_2)e^{-2t}$

For the equation y'' + 4y' + 4y = 0, say you know $y_1(t) = e^{-2t}$. Guess $y_2(t) = v(t)e^{-2t}$ (where $v(t) = C_1t + C_2$). $= (C_1t + C_2)e^{-2t}$ $= C_1te^{-2t} + C_2e^{-2t}$

For the equation y'' + 4y' + 4y = 0, say you know $y_1(t) = e^{-2t}$. Guess $y_2(t) = v(t)e^{-2t}$ (where $v(t) = C_1t + C_2$). $= (C_1t + C_2)e^{-2t}$ $= C_1te^{-2t} + Ce^{-2t}$ $y_1(t)$

For the equation y'' + 4y' + 4y = 0, say you know $y_1(t) = e^{-2t}$. Guess $y_2(t) = v(t)e^{-2t}$ (where $v(t) = C_1t + C_2$). $= (C_1t + C_2)e^{-2t}$ $= C(te^{-2t} + C_2e^{-2t})$ $y_2(t) = v(t)e^{-2t}$

For the equation y'' + 4y' + 4y = 0, say you know $y_1(t) = e^{-2t}$. Guess $y_2(t) = v(t)e^{-2t}$ (where $v(t) = C_1t + C_2$). $= (C_1t + C_2)e^{-2t}$ $y(t) = C(te^{-2t}) + C(e^{-2t})$ $y_2(t) = y_1(t)$

For the equation y'' + 4y' + 4y = 0, say you know $y_1(t) = e^{-2t}$. Guess $y_2(t) = v(t)e^{-2t}$ (where $v(t) = C_1t + C_2$). $= (C_1t + C_2)e^{-2t}$ $y(t) = C(te^{-2t}) + C(e^{-2t})$ $y_2(t) = y_1(t)$

For the equation y'' + 4y' + 4y = 0, say you know $y_1(t) = e^{-2t}$. Guess $y_2(t) = v(t)e^{-2t}$ (where $v(t) = C_1t + C_2$). $= (C_1t + C_2)e^{-2t}$ $y(t) = C(te^{-2t} + C(e^{-2t}))$ $y_2(t) = y_1(t)$

$$W(e^{-2t}, te^{-2t})(t)$$

For the equation y'' + 4y' + 4y = 0, say you know $y_1(t) = e^{-2t}$. Guess $y_2(t) = v(t)e^{-2t}$ (where $v(t) = C_1t + C_2$). $= (C_1t + C_2)e^{-2t}$ $y(t) = C(te^{-2t}) + C(e^{-2t})$ $y_2(t) = y_1(t)$

$$W(e^{-2t}, te^{-2t})(t) = y_1(t)y_2'(t) - y_1'(t)y_2(t)$$

For the equation y'' + 4y' + 4y = 0, say you know $y_1(t) = e^{-2t}$. Guess $y_2(t) = v(t)e^{-2t}$ (where $v(t) = C_1t + C_2$). $= (C_1t + C_2)e^{-2t}$ $y(t) = C(te^{-2t}) + C(e^{-2t})$ $y_2(t) = y_1(t)$

$$W(e^{-2t}, te^{-2t})(t) = y_1(t)y_2'(t) - y_1'(t)y_2(t) = e^{-4t}$$

For the equation y'' + 4y' + 4y = 0, say you know $y_1(t) = e^{-2t}$. Guess $y_2(t) = v(t)e^{-2t}$ (where $v(t) = C_1t + C_2$). $= (C_1t + C_2)e^{-2t}$ $y(t) = C(te^{-2t}) + C(e^{-2t})$ $y_2(t) = y_1(t)$

$$W(e^{-2t}, te^{-2t})(t) = y_1(t)y_2'(t) - y_1'(t)y_2(t) = e^{-4t} \neq 0$$

For the equation y'' + 4y' + 4y = 0, say you know $y_1(t) = e^{-2t}$. Guess $y_2(t) = v(t)e^{-2t}$ (where $v(t) = C_1t + C_2$). $= (C_1t + C_2)e^{-2t}$ $y(t) = C(te^{-2t}) + C(e^{-2t})$ $y_2(t) = y_1(t)$

Is this the general solution? Calculate the Wronskian:

$$W(e^{-2t}, te^{-2t})(t) = y_1(t)y_2'(t) - y_1'(t)y_2(t) = e^{-4t} \neq 0$$

So yes!

- For the general case, $ay^{\prime\prime}+by^{\prime}+cy=0$, by assuming $\,y(t)=e^{rt}$

we get the characteristic equation:

$$ar^2 + br + c = 0$$

- For the general case, $ay^{\prime\prime}+by^{\prime}+cy=0$, by assuming $\,y(t)=e^{rt}$

we get the characteristic equation:

$$ar^2 + br + c = 0$$

• There are three cases.

- For the general case, $ay^{\prime\prime}+by^{\prime}+cy=0$, by assuming $\,y(t)=e^{rt}$

we get the characteristic equation:

$$ar^2 + br + c = 0$$

• There are three cases.

I. Two distinct real roots: $b^2 - 4ac > 0$. (r_1, r_2)

- For the general case, $ay^{\prime\prime}+by^{\prime}+cy=0$, by assuming $\,y(t)=e^{rt}$

we get the characteristic equation:

$$ar^2 + br + c = 0$$

• There are three cases.

I. Two distinct real roots: b² - 4ac > 0. (r₁, r₂) $y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$

- For the general case, $ay^{\prime\prime}+by^{\prime}+cy=0$, by assuming $\,y(t)=e^{rt}$

we get the characteristic equation:

$$ar^2 + br + c = 0$$

• There are three cases.

I. Two distinct real roots: b² - 4ac > 0. (r₁, r₂) $y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$

II.A repeated real root: $b^2 - 4ac = 0.(r)$

- For the general case, $ay^{\prime\prime}+by^{\prime}+cy=0$, by assuming $\,y(t)=e^{rt}$

we get the characteristic equation:

$$ar^2 + br + c = 0$$

• There are three cases.

I. Two distinct real roots: b² - 4ac > 0. (r₁, r₂) $y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$

II.A repeated real root: $b^2 - 4ac = 0.(r)$

$$y(t) = C_1 e^{rt} + C_2 t e^{rt}$$

- For the general case, $ay^{\prime\prime}+by^{\prime}+cy=0$, by assuming $\,y(t)=e^{rt}$

we get the characteristic equation:

$$ar^2 + br + c = 0$$

• There are three cases.

I. Two distinct real roots: $b^2 - 4ac > 0$. (r_1, r_2) $y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$

II.A repeated real root: $b^2 - 4ac = 0.(r)$

$$y(t) = C_1 e^{rt} + C_2 t e^{rt}$$

III.Two complex roots: $b^2 - 4ac < 0$. ($r_{1,2} = \alpha \pm i\beta$)

- For the general case, $ay^{\prime\prime}+by^{\prime}+cy=0$, by assuming $\,y(t)=e^{rt}$

we get the characteristic equation:

$$ar^2 + br + c = 0$$

• There are three cases.

I. Two distinct real roots: $b^2 - 4ac > 0$. (r_1, r_2) $y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$

II.A repeated real root: $b^2 - 4ac = 0.(r)$

$$y(t) = C_1 e^{rt} + C_2 t e^{rt}$$

III.Two complex roots: $b^2 - 4ac < 0$. ($r_{1,2} = \alpha \pm i\beta$)

$$y = e^{\alpha t} \left(C_1 \cos(\beta t) + C_2 \sin(\beta t) \right)$$

$$y'' - 6y' + 8y = 0$$

(A)
$$y(t) = C_1 e^{-2t} + C_2 e^{-4t}$$

(B)
$$y(t) = C_1 e^{2t} + C_2 e^{4t}$$

(C)
$$y(t) = e^{2t}(C_1\cos(4t) + C_2\sin(4t))$$

(D)
$$y(t) = e^{-2t} (C_1 \cos(4t) + C_2 \sin(4t))$$

(E)
$$y(t) = C_1 e^{2t} + C_2 t e^{4t}$$

$$y'' - 6y' + 8y = 0$$

(A)
$$y(t) = C_1 e^{-2t} + C_2 e^{-4t}$$

$$\bigstar (B) \ y(t) = C_1 e^{2t} + C_2 e^{4t}$$

(C)
$$y(t) = e^{2t}(C_1\cos(4t) + C_2\sin(4t))$$

(D)
$$y(t) = e^{-2t} (C_1 \cos(4t) + C_2 \sin(4t))$$

(E)
$$y(t) = C_1 e^{2t} + C_2 t e^{4t}$$

$$y'' - 6y' + 9y = 0$$

(A)
$$y(t) = C_1 e^{3t}$$

(B)
$$y(t) = C_1 e^{3t} + C_2 e^{3t}$$

(C)
$$y(t) = C_1 e^{3t} + C_2 e^{-3t}$$

(D)
$$y(t) = C_1 e^{3t} + C_2 t e^{3t}$$

(E)
$$y(t) = C_1 e^{3t} + C_2 v(t) e^{3t}$$

$$y'' - 6y' + 9y = 0$$

(A)
$$y(t) = C_1 e^{3t}$$

(B)
$$y(t) = C_1 e^{3t} + C_2 e^{3t}$$

(C)
$$y(t) = C_1 e^{3t} + C_2 e^{-3t}$$

$$rightarrow$$
 (D) $y(t) = C_1 e^{3t} + C_2 t e^{3t}$

(E)
$$y(t) = C_1 e^{3t} + C_2 v(t) e^{3t}$$

$$y'' - 6y' + 10y = 0$$
(A) $y(t) = C_1 e^{3t} + C_2 e^t$
(B) $y(t) = C_1 e^{3t} + C_2 e^{-t}$
(C) $y(t) = C_1 \cos(3t) + C_2 \sin(3t)$
(D) $y(t) = e^t (C_1 \cos(3t) + C_2 \sin(3t))$
(E) $y(t) = e^{3t} (C_1 \cos(t) + C_2 \sin(t))$

$$y'' - 6y' + 10y = 0$$
(A) $y(t) = C_1 e^{3t} + C_2 e^t$
(B) $y(t) = C_1 e^{3t} + C_2 e^{-t}$
(C) $y(t) = C_1 \cos(3t) + C_2 \sin(3t)$
(D) $y(t) = e^t (C_1 \cos(3t) + C_2 \sin(3t))$
(E) $y(t) = e^{3t} (C_1 \cos(t) + C_2 \sin(t))$