
Welcome to MATH 256

Differential equations (for Chemical and Biological Engineering students)

Instructor: 
Prof. Eric Cytrynbaum



Course goals

• Primary: Learn to solve ordinary and partial differential equations (mostly 
linear first and second order DEs).

• Secondary: Learn to use DEs to model physical, chemical, biological systems 
(really just an intro to this skill).



Prerequisites

• First year calculus (MATH 100/101).

• Linear algebra (MATH 152).

• Multivariable calculus (MATH 200 or 253).

• Talk to me if you aren’t sure that you’re prepared for this course.



Tools we’ll be using this term

• WeBWorK for homework assignments.

• Piazza for online discussion.

• Clickers for in-class responses.

• Cell phones and facebook for getting distracted during lectures and while 
studying.
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WeBWorK

• Online homework system.

• https://webwork.elearning.ubc.ca/webwork2/MATH256-201_2013W2

• Log in using your CWL.

https://webwork.elearning.ubc.ca/webwork2/MATH256-201_2013W2
https://webwork.elearning.ubc.ca/webwork2/MATH256-201_2013W2
https://webwork.elearning.ubc.ca/webwork2/MATH256-201_2013W2


Why WeBWorK?

• Automated marking (instant feedback).

• Free for students (unlike hw systems provided by textbook companies).

• Stable, open source, widely used at UBC and many other universities.
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• Automated marking (instant feedback).
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• Have you used WeBWorK previously?   (A) Yes. (B) No.



Piazza

• Online discussion forum.

• Sign up at https://piazza.com

https://piazza.com
https://piazza.com


Why Piazza?

• Get faster responses to your questions.

• See what your classmates are asking about.

• Connect with others in the class who are looking for study partners.
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Clickers

• Personal response system.

• Register your clicker at https://connect.ubc.ca

https://connect.ubc.ca
https://connect.ubc.ca


Why clickers?

• Active learning - you should be thinking during class.

• My goal is to make clicker Qs that many of you get wrong - they help us 
to target what you don’t understand yet.

• Points are for (thinking and then) clicking, not for getting answers correct.

• I don’t look at the results on an individual basis so they are effectively 
anonymous.



Why clickers?

• Active learning - you should be thinking during class.

• My goal is to make clicker Qs that many of you get wrong - they help us 
to target what you don’t understand yet.

• Points are for (thinking and then) clicking, not for getting answers correct.
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More info online...

• Check the course website for 

• office hour info,
• info on additional help,
• textbook,
• course policies (e.g. marking scheme)
• week-by-week schedule.

• https://wiki.math.ubc.ca/mathbook/M256/MATH_256_-
_Differential_Equations

https://wiki.math.ubc.ca/mathbook/M256/MATH_256_-_Differential_Equations
https://wiki.math.ubc.ca/mathbook/M256/MATH_256_-_Differential_Equations
https://wiki.math.ubc.ca/mathbook/M256/MATH_256_-_Differential_Equations
https://wiki.math.ubc.ca/mathbook/M256/MATH_256_-_Differential_Equations
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Felix Baumgartner’s freefall from 40 km up

• Newton says Fnet=ma or

• A differential equation in disguise because  

• so the equation is really a DE for v(t)!

• Simple model to predict how fast he’ll go, how long it will take etc.

ma = −mg + kv2

a = v�

mv� = −mg + kv2
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Felix Baumgartner’s freefall from 40 km up

• Flaws with this model?

• g is not constant...

• ...but 6371 km ≈ 6411 km so not bad.

• k is not constant either (depends on air density) - this is significant!

mv� = −mg + kv2



A bacterial cell division regulator

• Two interacting bacterial proteins that undergo complicated dynamics.

• Differential equation model help understand how they work.

Experiment Model

∂v

∂t
= uv − v + D

∂2v

∂x2

∂u

∂t
= u− uv + D

∂2u

∂x2
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Classifying DEs (Section 1.3)

• Ordinary differential equation (ODE) - a DE that involves derivatives of a 
function with respect to only one independent variable.

• Partial differential equation (PDE) - a DE that involves derivatives of a function 
with respect to more than one independent variable.

∂u

∂t
= D

∂2u

∂x2
Heat/diffusion equation:

Wave equation:

Logistic equation:

Beam equation:

dP

dt
= rP

�
1− P

K

�

EI
d4w

dx4
= q

∂2u

∂t2
= c2 ∂2u

∂x2



Classifying DEs (Section 1.3)



Classifying DEs (Section 1.3)

• Order of a DE - order of the highest derivative in the equation.



Classifying DEs (Section 1.3)

• Order of a DE - order of the highest derivative in the equation.

• e.g. Heat/diffusion equation: 
∂u

∂t
= D

∂2u

∂x2



Classifying DEs (Section 1.3)

• Order of a DE - order of the highest derivative in the equation.

• e.g. Heat/diffusion equation: 

• First order in time (t), second order in space (x).

∂u

∂t
= D

∂2u

∂x2



Classifying DEs (Section 1.3)

• Order of a DE - order of the highest derivative in the equation.

• e.g. Heat/diffusion equation: 

• First order in time (t), second order in space (x).

∂u

∂t
= D

∂2u

∂x2

Logistic equation:

dP

dt
= rP

�
1− P

K

�

• Order (in time):

(A) first order

(B) second order

(C) third order 

(D) fourth order



Classifying DEs (Section 1.3)

• Order of a DE - order of the highest derivative in the equation.

• e.g. Heat/diffusion equation: 

• First order in time (t), second order in space (x).

∂u

∂t
= D

∂2u

∂x2

Beam equation:

EI
d4w

dx4
= q

• Order (in space):

(A) first order

(B) second order

(C) third order 

(D) fourth order



Classifying DEs (Section 1.3)

• Order of a DE - order of the highest derivative in the equation.

• e.g. Heat/diffusion equation: 

• First order in time (t), second order in space (x).

∂u

∂t
= D

∂2u

∂x2

Wave equation:

∂2u

∂t2
= c2 ∂2u

∂x2

• Order (in time):

(A) first order

(B) second order

(C) third order 

(D) fourth order



Classifying DEs (Section 1.3)

• Order of a DE - order of the highest derivative in the equation.

• e.g. Heat/diffusion equation: 

• First order in time (t), second order in space (x).

∂u

∂t
= D

∂2u

∂x2

Wave equation:

∂2u

∂t2
= c2 ∂2u

∂x2

• Order (in space):

(A) first order

(B) second order

(C) third order 

(D) fourth order



Classifying DEs (Section 1.3)

• Linearity - a DE is linear if it is linear in the unknown function and all its 
derivatives.

• (A) Linear or (B) nonlinear:



Classifying DEs (Section 1.3)

• Linearity - a DE is linear if it is linear in the unknown function and all its 
derivatives.

• (A) Linear or (B) nonlinear:

dP

dt
= rP

�
1− P

K

�



Classifying DEs (Section 1.3)

• Linearity - a DE is linear if it is linear in the unknown function and all its 
derivatives.

• (A) Linear or (B) nonlinear:

dP

dt
= rP

�
1− P

K

�
= rP − r

K
P 2



Classifying DEs (Section 1.3)

• Linearity - a DE is linear if it is linear in the unknown function and all its 
derivatives.

• (A) Linear or (B) nonlinear:

dP

dt
= rP

�
1− P

K

�
= rP − r

K
P 2 <--- Nonlinear



Classifying DEs (Section 1.3)

• Linearity - a DE is linear if it is linear in the unknown function and all its 
derivatives.

• (A) Linear or (B) nonlinear:

EI
d4w

dx4
= q

dP

dt
= rP

�
1− P

K

�
= rP − r

K
P 2 <--- Nonlinear



Classifying DEs (Section 1.3)

• Linearity - a DE is linear if it is linear in the unknown function and all its 
derivatives.

• (A) Linear or (B) nonlinear:

EI
d4w

dx4
= q

dP

dt
= rP

�
1− P

K

�
= rP − r

K
P 2

<--- Linear

<--- Nonlinear



Classifying DEs (Section 1.3)

• Linearity - a DE is linear if it is linear in the unknown function and all its 
derivatives.

• (A) Linear or (B) nonlinear:

EI
d4w

dx4
= q

dP

dt
= rP

�
1− P

K

�
= rP − r

K
P 2

<--- Linear

<--- Nonlinear

t2
dy

dt
+ y = sin(t)



Classifying DEs (Section 1.3)

• Linearity - a DE is linear if it is linear in the unknown function and all its 
derivatives.

• (A) Linear or (B) nonlinear:

EI
d4w

dx4
= q

dP

dt
= rP

�
1− P

K

�
= rP − r

K
P 2

<--- Linear

<--- Linear

<--- Nonlinear

t2
dy

dt
+ y = sin(t)



Classifying DEs (Section 1.3)

• Linearity - a DE is linear if it is linear in the unknown function and all its 
derivatives.

• (A) Linear or (B) nonlinear:

EI
d4w

dx4
= q

dP

dt
= rP

�
1− P

K

�
= rP − r

K
P 2

<--- Linear

<--- Linear

<--- Nonlinear

t2
dy

dt
+ y2 = sin(t)

t2
dy

dt
+ y = sin(t)



Classifying DEs (Section 1.3)

• Linearity - a DE is linear if it is linear in the unknown function and all its 
derivatives.

• (A) Linear or (B) nonlinear:

EI
d4w

dx4
= q

dP

dt
= rP

�
1− P

K

�
= rP − r

K
P 2

<--- Linear

<--- Linear

<--- Nonlinear

<--- Nonlinear

t2
dy

dt
+ y2 = sin(t)

t2
dy

dt
+ y = sin(t)



More definitions - solutions



More definitions - solutions

• Solution to a DE on some interval A 



More definitions - solutions

• Solution to a DE on some interval A 

• a function that is suitable differentiable everywhere in A (i.e. has as 
many derivatives as appear in the equation) and,



More definitions - solutions

• Solution to a DE on some interval A 

• a function that is suitable differentiable everywhere in A (i.e. has as 
many derivatives as appear in the equation) and,

• satisfies the equation.



More definitions - solutions

• Solution to a DE on some interval A 

• a function that is suitable differentiable everywhere in A (i.e. has as 
many derivatives as appear in the equation) and,

• satisfies the equation.

• Arbitrary constant - a constant that does not appear in the DE but arises while 
solving the equation (usually at an integration step).



More definitions - solutions

• Solution to a DE on some interval A 

• a function that is suitable differentiable everywhere in A (i.e. has as 
many derivatives as appear in the equation) and,

• satisfies the equation.

• Arbitrary constant - a constant that does not appear in the DE but arises while 
solving the equation (usually at an integration step).

• A particular solution - a solution with no arbitrary constants in it.



More definitions - solutions

• Solution to a DE on some interval A 

• a function that is suitable differentiable everywhere in A (i.e. has as 
many derivatives as appear in the equation) and,

• satisfies the equation.

• Arbitrary constant - a constant that does not appear in the DE but arises while 
solving the equation (usually at an integration step).

• A particular solution - a solution with no arbitrary constants in it.

• The general solution - a solution with one or more arbitrary constants that 
encompass ALL possible solutions to the DE.
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Method of integrating factors (Section 2.1)

• Given that

• if you’re given the equation

• you can rewrite is as 

• so the solution is                              or equivalently                         . 

d

dt

�
t2y(t)

�
= t2

dy

dt
+ 2ty

t2
dy

dt
+ 2ty = 0

d

dt

�
t2y(t)

�
= 0

t2y(t) = C y(t) =
C

t2

arbitrary constant 
that appeared at an 

integration step



Method of integrating factors (Section 2.1)

• Solve the equation                                                     (not brute force checking).

(A) 

(B) 

(C) 

(D) 

(E) 

t2
dy

dt
+ 2ty(t) = sin(t)

y(t) = − cos(t) + C

y(t) =
C − cos(t)

t2
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t2
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Method of integrating factors (Section 2.1)

• Solve the equation                                                     (not brute force checking).

(A) 

(B) 

(C) 

(D) 

(E) 

t2
dy

dt
+ 2ty(t) = sin(t)

y(t) = − cos(t) + C

y(t) =
C − cos(t)

t2

y(t) = − 1
t2

cos(t)

y(t) = − 1
t2

sin(t)

y(t) = sin(t) + C

general solution 
(although that’s not 

obvious)

a particular solution 
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Initial conditions (IC) and initial value problems (IVP)

• An initial condition is an added constraint on a solution. 

• e.g. Solve                                                    subject to the IC                     .t2
dy

dt
+ 2ty(t) = sin(t) y(π) = 0

y(t) =
1 + cos(t)

t2

y(t) = −1− cos(t)
t2

y(t) = −1 + cos(t)
t2

y(t) = −C + cos(π)
π2

(A) 

(B) 

(C) 

(D)

• An Initial Value Problem (IVP) is a ODE together with an IC.



Method of integrating factors (Section 2.1)

• A few examples - for each one, find a function f(t) to multiply through by so 
that the left hand side becomes a product rule:



Method of integrating factors (Section 2.1)

• A few examples - for each one, find a function f(t) to multiply through by so 
that the left hand side becomes a product rule:

t
dy

dt
+ 2y(t) = 1



Method of integrating factors (Section 2.1)

• A few examples - for each one, find a function f(t) to multiply through by so 
that the left hand side becomes a product rule:

t2
dy

dt
+ 4ty(t) =

1
t



Method of integrating factors (Section 2.1)

• A few examples - for each one, find a function f(t) to multiply through by so 
that the left hand side becomes a product rule:

dy

dt
+ y(t) = 0



Method of integrating factors (Section 2.1)

• A few examples - for each one, find a function f(t) to multiply through by so 
that the left hand side becomes a product rule:

dy

dt
+ cos(t)y(t) = 0



Method of integrating factors (Section 2.1)

• A few examples - for each one, find a function f(t) to multiply through by so 
that the left hand side becomes a product rule:

dy

dt
+ g�(t)y(t) = 0



Method of integrating factors (Section 2.1)

t
dy

dt
+ 2y(t) = 1

t2
dy

dt
+ 4ty(t) =

1
t

dy

dt
+ y(t) = 0

dy

dt
+ cos(t)y(t) = 0

dy

dt
+ g�(t)y(t) = 0

→ f(t) = t

→ f(t) = et

→ f(t) = t2

→ f(t) = esin(t)

→ f(t) = eg(t)



Method of integrating factors (Section 2.1)

• General case - all first order linear ODEs can be written in the form

• The appropriate integrating factor is                  .

• The equation can be rewritten                                                                 which 

is solvable provided you can find the antiderivative of the right hand side.

dy

dt
+ p(t)y = q(t)

e
R

p(t)dt

d

dt

�
e

R
p(t)dty

�
= e

R
p(t)dtq(t)


