Today

- Solving a second order linear homogeneous equation with constant coefficients
 - complex roots to the characteristic equation,
 - repeated roots to the characteristic equation (Reduction of Order).
- Connections to matrix algebra.
- Solving a second order linear nonhomogeneous equation.

Reminder: Euler's formula

$$e^{i\theta} = \cos\theta + i\sin\theta$$

$$ar^2 + br + c = 0$$

• For the general case, ay'' + by' + cy = 0, by assuming $y(t) = e^{rt}$ we get the characteristic equation:

$$ar^2 + br + c = 0$$

$$r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

• For the general case, ay'' + by' + cy = 0, by assuming $y(t) = e^{rt}$ we get the characteristic equation:

$$ar^2 + br + c = 0$$

$$r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-b \pm \sqrt{-1}\sqrt{4ac - b^2}}{2a}$$

• For the general case, ay'' + by' + cy = 0, by assuming $y(t) = e^{rt}$ we get the characteristic equation:

$$ar^2 + br + c = 0$$

$$r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-b \pm \sqrt{-1}\sqrt{4ac - b^2}}{2a}$$

$$= \frac{-b \pm i\sqrt{4ac - b^2}}{2a}$$

• For the general case, ay'' + by' + cy = 0, by assuming $y(t) = e^{rt}$ we get the characteristic equation:

$$ar^2 + br + c = 0$$

$$r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-b \pm \sqrt{-1}\sqrt{4ac - b^2}}{2a}$$

$$= \frac{-b \pm i\sqrt{4ac - b^2}}{2a} = \frac{-b}{2a} \pm \frac{\sqrt{4ac - b^2}}{2a}i$$

• For the general case, ay'' + by' + cy = 0, by assuming $y(t) = e^{rt}$ we get the characteristic equation:

$$ar^2 + br + c = 0$$

$$r_{1,2} = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

$$= \frac{-b \pm \sqrt{-1}\sqrt{4ac - b^2}}{2a}$$

$$= \frac{-b \pm i\sqrt{4ac - b^2}}{2a} = \frac{-b}{2a} \pm \frac{\sqrt{4ac - b^2}}{2a}i$$

$$= \alpha \pm \beta i$$

$$y_1(t) = e^{(\alpha + \beta i)t}$$

$$y_1(t) = e^{(\alpha + \beta i)t}$$
$$= e^{\alpha t} e^{i\beta t}$$

$$y_1(t) = e^{(\alpha + \beta i)t}$$

$$= e^{\alpha t} e^{i\beta t}$$

$$= e^{\alpha t} (\cos(\beta t) + i\sin(\beta t))$$

$$y_1(t) = e^{(\alpha + \beta i)t}$$

$$= e^{\alpha t} e^{i\beta t}$$

$$= e^{\alpha t} (\cos(\beta t) + i \sin(\beta t))$$

$$y_2(t) = e^{(\alpha - \beta i)t}$$

$$y_1(t) = e^{(\alpha + \beta i)t}$$

$$= e^{\alpha t} e^{i\beta t}$$

$$= e^{\alpha t} (\cos(\beta t) + i\sin(\beta t))$$

$$y_2(t) = e^{(\alpha - \beta i)t}$$

$$= e^{\alpha t} e^{-i\beta t}$$

$$y_1(t) = e^{(\alpha + \beta i)t}$$

$$= e^{\alpha t} e^{i\beta t}$$

$$= e^{\alpha t} (\cos(\beta t) + i \sin(\beta t))$$

$$y_2(t) = e^{(\alpha - \beta i)t}$$

$$= e^{\alpha t} e^{-i\beta t}$$

$$= e^{\alpha t} (\cos(-\beta t) + i \sin(-\beta t))$$

$$y_1(t) = e^{(\alpha+\beta i)t}$$

$$= e^{\alpha t}e^{i\beta t}$$

$$= e^{\alpha t}(\cos(\beta t) + i\sin(\beta t))$$

$$y_2(t) = e^{(\alpha-\beta i)t}$$

$$= e^{\alpha t}e^{-i\beta t}$$

$$= e^{\alpha t}(\cos(-\beta t) + i\sin(-\beta t))$$

$$= e^{\alpha t}(\cos(\beta t) - i\sin(\beta t))$$

$$y_1(t) = e^{\alpha t}(\cos(\beta t) + i\sin(\beta t))$$

$$y_2(t) = e^{\alpha t}(\cos(\beta t) - i\sin(\beta t))$$

 Complex roots to the characteristic equation mean complex valued solution to the ODE:

$$y_1(t) = e^{\alpha t} (\cos(\beta t) + i \sin(\beta t))$$
$$y_2(t) = e^{\alpha t} (\cos(\beta t) - i \sin(\beta t))$$

 Instead of using these to form the general solution, let's use them to find two real valued solutions:

 Complex roots to the characteristic equation mean complex valued solution to the ODE:

$$y_1(t) = e^{\alpha t} (\cos(\beta t) + i \sin(\beta t))$$
$$y_2(t) = e^{\alpha t} (\cos(\beta t) - i \sin(\beta t))$$

 Instead of using these to form the general solution, let's use them to find two real valued solutions:

$$\frac{1}{2}y_1(t) + \frac{1}{2}y_2(t) = e^{\alpha t}\cos(\beta t)$$

 Complex roots to the characteristic equation mean complex valued solution to the ODE:

$$y_1(t) = e^{\alpha t} (\cos(\beta t) + i \sin(\beta t))$$
$$y_2(t) = e^{\alpha t} (\cos(\beta t) - i \sin(\beta t))$$

 Instead of using these to form the general solution, let's use them to find two real valued solutions:

$$\frac{1}{2}y_1(t) + \frac{1}{2}y_2(t) = e^{\alpha t}\cos(\beta t)$$
$$\frac{1}{2i}y_1(t) - \frac{1}{2i}y_2(t) = e^{\alpha t}\sin(\beta t)$$

 Complex roots to the characteristic equation mean complex valued solution to the ODE:

$$y_1(t) = e^{\alpha t} (\cos(\beta t) + i \sin(\beta t))$$
$$y_2(t) = e^{\alpha t} (\cos(\beta t) - i \sin(\beta t))$$

 Instead of using these to form the general solution, let's use them to find two real valued solutions:

$$\frac{1}{2}y_1(t) + \frac{1}{2}y_2(t) = e^{\alpha t}\cos(\beta t)$$
$$\frac{1}{2i}y_1(t) - \frac{1}{2i}y_2(t) = e^{\alpha t}\sin(\beta t)$$

General solution:

$$y(t) = C_1 e^{\alpha t} \cos(\beta t) + C_2 e^{\alpha t} \sin(\beta t)$$

• To be sure this is a general solution, we must check the Wronskian:

$$W(e^{\alpha t}\cos(\beta t), e^{\alpha t}\sin(\beta t))(t) =$$

(for you to fill in later - is it non-zero?)

Recall: $W(y_1, y_2)(t) = y_1(t)y_2'(t) - y_1'(t)y_2(t)$

Example: Find the (real valued) general solution to the equation

$$y'' + 2y' + 5y = 0$$

• Step 1: Assume $y(t) = e^{rt}$, plug this into the equation and find values of r that make it work.

(A)
$$r_1 = 1+2i$$
, $r_2 = 1-2i$

(D)
$$r_1 = 2+4i$$
, $r_2 = 2-4i$

(B)
$$r_1 = -1+2i$$
, $r_2 = -1-2i$

(E)
$$r_1 = -2+4i$$
, $r_2 = -2-4i$

(C)
$$r_1 = 1-2i$$
, $r_2 = -1+2i$

Example: Find the (real valued) general solution to the equation

$$y'' + 2y' + 5y = 0$$

• Step 1: Assume $y(t) = e^{rt}$, plug this into the equation and find values of r that make it work.

(A)
$$r_1 = 1+2i$$
, $r_2 = 1-2i$

(D)
$$r_1 = 2+4i$$
, $r_2 = 2-4i$

$$\uparrow \uparrow$$
 (B) $r_1 = -1+2i$, $r_2 = -1-2i$

(E)
$$r_1 = -2+4i$$
, $r_2 = -2-4i$

(C)
$$r_1 = 1-2i$$
, $r_2 = -1+2i$

• Example: Find the (real valued) general solution to the equation

$$y'' + 2y' + 5y = 0$$

 Step 2: Real part of r goes in the exponent, imaginary part goes in the trig functions.

(A)
$$y(t) = e^{-t}(C_1 \cos(2t) + C_2 \sin(2t))$$

(B)
$$y(t) = C_1 e^{(-1+2i)t} + C_2 e^{(-1-2i)t}$$

(C)
$$y(t) = C_1 \cos(2t) + C_2 \sin(2t) + C_3 e^{-t}$$

(D)
$$y(t) = C_1 \cos(2t) + C_2 \sin(2t)$$

• Example: Find the (real valued) general solution to the equation

$$y'' + 2y' + 5y = 0$$

 Step 2: Real part of r goes in the exponent, imaginary part goes in the trig functions.

$$(A)$$
 $y(t) = e^{-t}(C_1\cos(2t) + C_2\sin(2t))$

(B)
$$y(t) = C_1 e^{(-1+2i)t} + C_2 e^{(-1-2i)t}$$

(C)
$$y(t) = C_1 \cos(2t) + C_2 \sin(2t) + C_3 e^{-t}$$

(D)
$$y(t) = C_1 \cos(2t) + C_2 \sin(2t)$$

• Example: Find the solution to the IVP

$$y'' + 2y' + 5y = 0$$
, $y(0) = 1$, $y'(0) = 0$

• General solution: $y(t) = e^{-t}(C_1\cos(2t) + C_2\sin(2t))$

(A)
$$y(t) = e^{-t} (2\cos(2t) + \sin(2t))$$

(B)
$$y(t) = e^{-t} \left(\cos(2t) - \frac{1}{2} \sin(2t) \right)$$

(C)
$$y(t) = \frac{1}{2}e^{-t}(2\cos(2t) - \sin(2t))$$

(D)
$$y(t) = \frac{1}{2}e^{-t}(2\cos(2t) + \sin(2t))$$

Example: Find the solution to the IVP

$$y'' + 2y' + 5y = 0$$
, $y(0) = 1$, $y'(0) = 0$

• General solution: $y(t) = e^{-t}(C_1\cos(2t) + C_2\sin(2t))$

(A)
$$y(t) = e^{-t} (2\cos(2t) + \sin(2t))$$

(B)
$$y(t) = e^{-t} \left(\cos(2t) - \frac{1}{2} \sin(2t) \right)$$

(C)
$$y(t) = \frac{1}{2}e^{-t}(2\cos(2t) - \sin(2t))$$

$$\Rightarrow$$
 (D) $y(t) = \frac{1}{2}e^{-t}(2\cos(2t) + \sin(2t))$

$$ar^2 + br + c = 0$$

$$ar^2 + br + c = 0$$

- There are three cases.
 - i. Two distinct real roots: $b^2 4ac > 0$. $(r_1 \neq r_2)$
 - ii. A repeated real root: $b^2 4ac = 0$.
 - iii. Two complex roots: $b^2 4ac < 0$.

$$ar^2 + br + c = 0$$

- There are three cases.
 - i. Two distinct real roots: $b^2 4ac > 0$. $(r_1 \neq r_2)$
 - ii. A repeated real root: $b^2 4ac = 0$.
 - iii. Two complex roots: $b^2 4ac < 0$.
- For case ii ($r_1 = r_2 = r$), we need another independent solution!

$$ar^2 + br + c = 0$$

- There are three cases.
 - i. Two distinct real roots: $b^2 4ac > 0$. $(r_1 \neq r_2)$
 - ii. A repeated real root: $b^2 4ac = 0$.
 - iii. Two complex roots: $b^2 4ac < 0$.
- For case ii ($r_1 = r_2 = r$), we need another independent solution!
- Reduction of order a method for guessing another solution.

ullet You have one solution $y_1(t)$ and you want to find another independent one, $y_2(t)$.

- You have one solution $y_1(t)$ and you want to find another independent one, $y_2(t)$.
- Guess that $y_2(t)=v(t)y_1(t)$ for some as yet unknown v(t). If you can find v(t) this way, great. If not, gotta try something else.

- You have one solution $y_1(t)$ and you want to find another independent one, $y_2(t)$.
- Guess that $y_2(t)=v(t)y_1(t)$ for some as yet unknown v(t). If you can find v(t) this way, great. If not, gotta try something else.
- Example y'' + 4y' + 4y = 0. Only one root to the characteristic equation, r=-2, so we only get one solution that way: $y_1(t) = e^{-2t}$.

- You have one solution $y_1(t)$ and you want to find another independent one, $y_2(t)$.
- Guess that $y_2(t)=v(t)y_1(t)$ for some as yet unknown v(t). If you can find v(t) this way, great. If not, gotta try something else.
- Example y'' + 4y' + 4y = 0. Only one root to the characteristic equation, r=-2, so we only get one solution that way: $y_1(t) = e^{-2t}$.
- Use Reduction of order to find a second solution.

$$y_2(t) = v(t)e^{-2t}$$

For the equation y'' + 4y' + 4y = 0, say you know $y_1(t) = e^{-2t}$.

Guess $y_2(t) = v(t)e^{-2t}$.

Guess
$$y_2(t) = v(t)e^{-2t}$$
. $y_2'(t) = v'(t)e^{-2t} - 2v(t)e^{-2t}$

Guess
$$y_2(t) = v(t)e^{-2t}$$
. $y_2'(t) = v'(t)e^{-2t} - 2v(t)e^{-2t}$

$$y_2''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

Guess
$$y_2(t) = v(t)e^{-2t}$$
. $y_2'(t) = v'(t)e^{-2t} - 2v(t)e^{-2t}$

$$y_2''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2'' + 4y_2' + 4y_2 =$$

Guess
$$y_2(t)=v(t)e^{-2t}$$
. $y_2'(t)=v'(t)e^{-2t}-2v(t)e^{-2t}$
$$4y_2(t)=4v(t)e^{-2t}$$

$$y_2''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2'' + 4y_2' + 4y_2 =$$

Guess
$$y_2(t) = v(t)e^{-2t}$$
. $y_2'(t) = v'(t)e^{-2t} - 2v(t)e^{-2t}$
$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

$$y_2''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2'' + 4y_2' + 4y_2 =$$

Guess
$$y_2(t) = v(t)e^{-2t}$$
. $y_2'(t) = v'(t)e^{-2t} - 2v(t)e^{-2t}$
$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

$$y_2''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2''(t) = v''(t)e^{-2t} - 4v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2'' + 4y_2' + 4y_2 =$$

Guess
$$y_2(t) = v(t)e^{-2t}$$
. $y_2'(t) = v'(t)e^{-2t} - 2v(t)e^{-2t}$
$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

$$y_2''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2''(t) = v''(t)e^{-2t} - 4v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2'' + 4y_2' + 4y_2 =$$

Guess
$$y_2(t) = v(t)e^{-2t}$$
. $y_2'(t) = v'(t)e^{-2t} - 2v(t)e^{-2t}$
$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

$$y_2''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2''(t) = v''(t)e^{-2t} - 4v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2'' + 4y_2' + 4y_2 =$$

Guess
$$y_2(t) = v(t)e^{-2t}$$
. $y_2'(t) = v'(t)e^{-2t} - 2v(t)e^{-2t}$
$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

$$y_2''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2''(t) = v''(t)e^{-2t} - 4v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2'' + 4y_2' + 4y_2 =$$

Guess
$$y_2(t) = v(t)e^{-2t}$$
. $y_2'(t) = v'(t)e^{-2t} - 2v(t)e^{-2t}$
$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

$$y_2''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2''(t) = (v''(t)e^{-2t}) - 4v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2'' + 4y_2' + 4y_2 = v''e^{-2t}$$

Guess
$$y_2(t) = v(t)e^{-2t}$$
. $y_2'(t) = v'(t)e^{-2t} - 2v(t)e^{-2t}$
$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

$$y_2''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2''(t) = (v''(t)e^{-2t}) - 4v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$0 = y_2'' + 4y_2' + 4y_2 = v''e^{-2t}$$

Guess
$$y_2(t) = v(t)e^{-2t}$$
. $y_2'(t) = v'(t)e^{-2t} - 2v(t)e^{-2t}$
$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

$$y_2''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2''(t) = (v''(t)e^{-2t}) - 4v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$0 = y_2'' + 4y_2' + 4y_2 = v''e^{-2t}$$

$$v'' = 0$$

Guess
$$y_2(t) = v(t)e^{-2t}$$
. $y_2'(t) = v'(t)e^{-2t} - 2v(t)e^{-2t}$
$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

$$y_2''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2''(t) = (v''(t)e^{-2t}) - 4v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$0 = y_2'' + 4y_2' + 4y_2 = v''e^{-2t}$$

$$v'' = 0 \implies v' = C_1$$

Guess
$$y_2(t) = v(t)e^{-2t}$$
. $y_2'(t) = v'(t)e^{-2t} - 2v(t)e^{-2t}$
$$\downarrow \qquad \qquad \downarrow \qquad \qquad$$

$$y_2''(t) = v''(t)e^{-2t} - 2v'(t)e^{-2t} - 2v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$y_2''(t) = (v''(t)e^{-2t}) - 4v'(t)e^{-2t} + 4v(t)e^{-2t}$$

$$0 = y_2'' + 4y_2' + 4y_2 = v''e^{-2t}$$

$$v'' = 0 \implies v' = C_1 \implies v(t) = C_1t + C_2$$

For the equation y''+4y'+4y=0, say you know $y_1(t)=e^{-2t}$. Guess $y_2(t)=v(t)e^{-2t}$ (where $v(t)=C_1t+C_2$).

For the equation y''+4y'+4y=0, say you know $y_1(t)=e^{-2t}$. Guess $y_2(t)=v(t)e^{-2t}$ (where $v(t)=C_1t+C_2$). $=(C_1t+C_2)e^{-2t}$

For the equation
$$y''+4y'+4y=0$$
, say you know $y_1(t)=e^{-2t}$. Guess $y_2(t)=v(t)e^{-2t}$ (where $v(t)=C_1t+C_2$).
$$=(C_1t+C_2)e^{-2t}$$

$$=C_1te^{-2t}+C_2e^{-2t}$$

For the equation
$$y''+4y'+4y=0$$
, say you know $y_1(t)=e^{-2t}$. Guess $y_2(t)=v(t)e^{-2t}$ (where $v(t)=C_1t+C_2$).
$$=(C_1t+C_2)e^{-2t}$$

$$=C_1te^{-2t}+C_2e^{-2t}$$

For the equation
$$y''+4y'+4y=0$$
, say you know $y_1(t)=e^{-2t}$. Guess $y_2(t)=v(t)e^{-2t}$ (where $v(t)=C_1t+C_2$).
$$=(C_1t+C_2)e^{-2t}$$

$$=C(te^{-2t})+C_2e^{-2t}$$

For the equation
$$y''+4y'+4y=0$$
, say you know $y_1(t)=e^{-2t}$. Guess $y_2(t)=v(t)e^{-2t}$ (where $v(t)=C_1t+C_2$).
$$=(C_1t+C_2)e^{-2t}$$

$$y(t)=C(te^{-2t})+C(e^{-2t})$$

$$y_2(t) \qquad y_1(t)$$

For the equation y''+4y'+4y=0, say you know $y_1(t)=e^{-2t}$. Guess $y_2(t)=v(t)e^{-2t}$ (where $v(t)=C_1t+C_2$). $=(C_1t+C_2)e^{-2t}$ $y(t)=C(te^{-2t})+C(e^{-2t})$

For the equation y'' + 4y' + 4y = 0, say you know $y_1(t) = e^{-2t}$.

Guess
$$y_2(t)=v(t)e^{-2t}$$
 (where $v(t)=C_1t+C_2$).
$$=(C_1t+C_2)e^{-2t}$$

$$y(t)=C(te^{-2t})+C_2e^{-2t}$$

$$y(t) = C(te^{-2t}) + C(e^{-2t})$$

 $y_2(t) y_1(t)$

$$W(e^{-2t}, te^{-2t})(t)$$

For the equation y'' + 4y' + 4y = 0, say you know $y_1(t) = e^{-2t}$.

Guess
$$y_2(t)=v(t)e^{-2t}$$
 (where $v(t)=C_1t+C_2$).
$$=(C_1t+C_2)e^{-2t}$$

$$y(t)=C(te^{-2t})+C_2e^{-2t}$$

$$y(t) = C(te^{-2t}) + C(e^{-2t})$$
$$y_2(t) y_1(t)$$

$$W(e^{-2t}, te^{-2t})(t) = y_1(t)y_2'(t) - y_1'(t)y_2(t)$$

For the equation y'' + 4y' + 4y = 0, say you know $y_1(t) = e^{-2t}$.

Guess
$$y_2(t)=v(t)e^{-2t}$$
 (where $v(t)=C_1t+C_2$).
$$=(C_1t+C_2)e^{-2t}$$

$$y(t)=C(te^{-2t})+C_2e^{-2t}$$

$$y(t) = C(te^{-2t}) + C(e^{-2t})$$
$$y_2(t) y_1(t)$$

$$W(e^{-2t}, te^{-2t})(t) = y_1(t)y_2'(t) - y_1'(t)y_2(t) = e^{-4t}$$

For the equation y'' + 4y' + 4y = 0, say you know $y_1(t) = e^{-2t}$.

Guess
$$y_2(t)=v(t)e^{-2t}$$
 (where $v(t)=C_1t+C_2$).
$$=(C_1t+C_2)e^{-2t}$$

$$y(t)=C(te^{-2t})+C(e^{-2t})$$

$$y(t) = C(te^{-2t}) + C(e^{-2t})$$
$$y_2(t) y_1(t)$$

$$W(e^{-2t}, te^{-2t})(t) = y_1(t)y_2'(t) - y_1'(t)y_2(t) = e^{-4t} \neq 0$$

For the equation y'' + 4y' + 4y = 0, say you know $y_1(t) = e^{-2t}$.

Guess
$$y_2(t)=v(t)e^{-2t}$$
 (where $v(t)=C_1t+C_2$).
$$=(C_1t+C_2)e^{-2t}$$

$$y(t)=C(te^{-2t})+C(e^{-2t})$$

$$y(t) = C(te^{-2t}) + C(e^{-2t})$$
$$y_2(t) y_1(t)$$

$$W(e^{-2t}, te^{-2t})(t) = y_1(t)y_2'(t) - y_1'(t)y_2(t) = e^{-4t} \neq 0$$

So yes!

• For the general case, ay''+by'+cy=0 , by assuming $y(t)=e^{rt}$ we get the characteristic equation:

$$ar^2 + br + c = 0$$

• For the general case, ay'' + by' + cy = 0, by assuming $y(t) = e^{rt}$ we get the characteristic equation:

$$ar^2 + br + c = 0$$

There are three cases.

• For the general case, ay''+by'+cy=0, by assuming $y(t)=e^{rt}$ we get the characteristic equation:

$$ar^2 + br + c = 0$$

- There are three cases.
 - i. Two distinct real roots: b^2 4ac > 0. (r_1 , r_2)

• For the general case, ay'' + by' + cy = 0, by assuming $y(t) = e^{rt}$ we get the characteristic equation:

$$ar^2 + br + c = 0$$

- There are three cases.
 - i. Two distinct real roots: b^2 4ac > 0. (r_1 , r_2)

$$y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$$

• For the general case, ay'' + by' + cy = 0, by assuming $y(t) = e^{rt}$ we get the characteristic equation:

$$ar^2 + br + c = 0$$

- There are three cases.
 - i. Two distinct real roots: b^2 4ac > 0. (r_1 , r_2)

$$y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$$

ii. A repeated real root: $b^2 - 4ac = 0. (r)$

• For the general case, ay'' + by' + cy = 0, by assuming $y(t) = e^{rt}$ we get the characteristic equation:

$$ar^2 + br + c = 0$$

- There are three cases.
 - i. Two distinct real roots: b^2 4ac > 0. (r_1 , r_2)

$$y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$$

ii. A repeated real root: $b^2 - 4ac = 0$. (r)

$$y(t) = C_1 e^{rt} + C_2 t e^{rt}$$

• For the general case, ay'' + by' + cy = 0, by assuming $y(t) = e^{rt}$ we get the characteristic equation:

$$ar^2 + br + c = 0$$

- There are three cases.
 - i. Two distinct real roots: b^2 4ac > 0. (r_1 , r_2)

$$y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$$

ii. A repeated real root: $b^2 - 4ac = 0$. (r)

$$y(t) = C_1 e^{rt} + C_2 t e^{rt}$$

iii. Two complex roots: $b^2 - 4ac < 0$. $(r_{1,2} = \alpha \pm i\beta)$

• For the general case, ay'' + by' + cy = 0, by assuming $y(t) = e^{rt}$ we get the characteristic equation:

$$ar^2 + br + c = 0$$

- There are three cases.
 - i. Two distinct real roots: b^2 4ac > 0. (r_1 , r_2)

$$y(t) = C_1 e^{r_1 t} + C_2 e^{r_2 t}$$

ii. A repeated real root: $b^2 - 4ac = 0$. (r)

$$y(t) = C_1 e^{rt} + C_2 t e^{rt}$$

iii. Two complex roots: $b^2 - 4ac < 0$. $(r_{1,2} = \alpha \pm i\beta)$

$$y = e^{\alpha t} \left(C_1 \cos(\beta t) + C_2 \sin(\beta t) \right)$$

$$y'' - 6y' + 8y = 0$$

(A)
$$y(t) = C_1 e^{-2t} + C_2 e^{-4t}$$

(B)
$$y(t) = C_1 e^{2t} + C_2 e^{4t}$$

(C)
$$y(t) = e^{2t}(C_1\cos(4t) + C_2\sin(4t))$$

(D)
$$y(t) = e^{-2t}(C_1\cos(4t) + C_2\sin(4t))$$

(E)
$$y(t) = C_1 e^{2t} + C_2 t e^{4t}$$

$$y'' - 6y' + 8y = 0$$

(A)
$$y(t) = C_1 e^{-2t} + C_2 e^{-4t}$$

$$\Rightarrow$$
 (B) $y(t) = C_1 e^{2t} + C_2 e^{4t}$

(C)
$$y(t) = e^{2t}(C_1\cos(4t) + C_2\sin(4t))$$

(D)
$$y(t) = e^{-2t}(C_1\cos(4t) + C_2\sin(4t))$$

(E)
$$y(t) = C_1 e^{2t} + C_2 t e^{4t}$$

$$y'' - 6y' + 9y = 0$$

(A)
$$y(t) = C_1 e^{3t}$$

(B)
$$y(t) = C_1 e^{3t} + C_2 e^{3t}$$

(C)
$$y(t) = C_1 e^{3t} + C_2 e^{-3t}$$

(D)
$$y(t) = C_1 e^{3t} + C_2 t e^{3t}$$

(E)
$$y(t) = C_1 e^{3t} + C_2 v(t) e^{3t}$$

$$y'' - 6y' + 9y = 0$$

(A)
$$y(t) = C_1 e^{3t}$$

(B)
$$y(t) = C_1 e^{3t} + C_2 e^{3t}$$

(C)
$$y(t) = C_1 e^{3t} + C_2 e^{-3t}$$

$$\uparrow$$
 (D) $y(t) = C_1 e^{3t} + C_2 t e^{3t}$

(E)
$$y(t) = C_1 e^{3t} + C_2 v(t) e^{3t}$$

$$y'' - 6y' + 10y = 0$$

(A)
$$y(t) = C_1 e^{3t} + C_2 e^t$$

(B)
$$y(t) = C_1 e^{3t} + C_2 e^{-t}$$

(C)
$$y(t) = C_1 \cos(3t) + C_2 \sin(3t)$$

(D)
$$y(t) = e^t(C_1\cos(3t) + C_2\sin(3t))$$

(E)
$$y(t) = e^{3t}(C_1\cos(t) + C_2\sin(t))$$

$$y'' - 6y' + 10y = 0$$

(A)
$$y(t) = C_1 e^{3t} + C_2 e^t$$

(B)
$$y(t) = C_1 e^{3t} + C_2 e^{-t}$$

(C)
$$y(t) = C_1 \cos(3t) + C_2 \sin(3t)$$

(D)
$$y(t) = e^t(C_1\cos(3t) + C_2\sin(3t))$$

$$\Rightarrow$$
 (E) $y(t) = e^{3t}(C_1 \cos(t) + C_2 \sin(t))$

 Our next goal is to figure out how to find solutions to nonhomogeneous equations like this one:

$$y'' - 6y' + 8y = \sin(2t)$$

 But first, a bit more on the connections between matrix algebra and differential equations . . .

• An mxn matrix is a gizmo that takes an n-vector and returns an m-vector: $\overline{y} = A\overline{x}$

- An mxn matrix is a gizmo that takes an n-vector and returns an m-vector: $\overline{y} = A\overline{x}$
- It is called a linear operator because it has the following properties:

$$A(c\overline{x}) = cA\overline{x}$$
$$A(\overline{x} + \overline{y}) = A\overline{x} + A\overline{y}$$

• An mxn matrix is a gizmo that takes an n-vector and returns an m-vector: $\overline{y} = A\overline{x}$

• It is called a linear operator because it has the following properties:

$$A(c\overline{x}) = cA\overline{x}$$
$$A(\overline{x} + \overline{y}) = A\overline{x} + A\overline{y}$$

 Not all operators work on vectors. Derivative operators take a function and return a new function. For example,

$$z = L[y] = \frac{d^2y}{dt^2} - 2\frac{dy}{dt} + y$$

• An m_xn matrix is a gizmo that takes an n-vector and returns an m-vector: $\overline{y} = A\overline{x}$

• It is called a linear operator because it has the following properties:

$$A(c\overline{x}) = cA\overline{x}$$
$$A(\overline{x} + \overline{y}) = A\overline{x} + A\overline{y}$$

 Not all operators work on vectors. Derivative operators take a function and return a new function. For example,

$$z = L[y] = \frac{d^2y}{dt^2} - 2\frac{dy}{dt} + y$$

This one is linear because

$$L[cy] = cL[y]$$

$$L[y+z] = L[y] + L[z]$$

Note: y, z are functions of t and c is a constant.

A homogeneous matrix equation has the form

$$A\overline{x} = \overline{0}$$

A homogeneous matrix equation has the form

$$A\overline{x} = \overline{0}$$

A non-homogeneous matrix equation has the form

$$A\overline{x} = \overline{b}$$

A homogeneous matrix equation has the form

$$A\overline{x} = \overline{0}$$

A non-homogeneous matrix equation has the form

$$A\overline{x} = \overline{b}$$

• A homogeneous differential equation has the form

$$L[y] = 0$$

A homogeneous matrix equation has the form

$$A\overline{x} = \overline{0}$$

A non-homogeneous matrix equation has the form

$$A\overline{x} = \overline{b}$$

A homogeneous differential equation has the form

$$L[y] = 0$$

A non-homogeneous differential equation has the form

$$L[y] = g(t)$$

Systems of equations written in operator notation.

System of equations

Operator definition

Systems of equations written in operator notation.

System of equations

$$x_1 + 2x_2 = 4$$

$$3x_1 + 4x_2 = 7$$

Systems of equations written in operator notation.

System of equations

$$x_1 + 2x_2 = 4$$

$$3x_1 + 4x_2 = 7$$

Operator definition

$$A\overline{x} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Systems of equations written in operator notation.

System of equations

$$x_1 + 2x_2 = 4$$
$$3x_1 + 4x_2 = 7$$

Operator definition

$$A\overline{x} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$A\overline{x} = \begin{pmatrix} 4 \\ 7 \end{pmatrix}$$

Systems of equations written in operator notation.

System of equations

$$x_1 + 2x_2 = 4$$
$$3x_1 + 4x_2 = 7$$

$$A\overline{x} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$A\overline{x} = \begin{pmatrix} 4 \\ 7 \end{pmatrix}$$

Some differential equations we've seen, written in operator notation.

Differential equation

Operator definition

Systems of equations written in operator notation.

System of equations

Equation in operator notation

$$x_1 + 2x_2 = 4$$
$$3x_1 + 4x_2 = 7$$

$$A\overline{x} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \qquad A\overline{x} = \begin{pmatrix} 4 \\ 7 \end{pmatrix}$$

$$A\overline{x} = \begin{pmatrix} 4 \\ 7 \end{pmatrix}$$

Some differential equations we've seen, written in operator notation.

Differential equation

Operator definition

$$t\frac{dy}{dt} + 2y = 4t^2$$

Systems of equations written in operator notation.

System of equations

Equation in operator notation

$$x_1 + 2x_2 = 4$$
$$3x_1 + 4x_2 = 7$$

$$A\overline{x} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \qquad A\overline{x} = \begin{pmatrix} 4 \\ 7 \end{pmatrix}$$

$$A\overline{x} = \begin{pmatrix} 4 \\ 7 \end{pmatrix}$$

Some differential equations we've seen, written in operator notation.

Differential equation

Operator definition

$$t\frac{dy}{dt} + 2y = 4t^2$$

$$L[y] = t\frac{dy}{dt} + 2y$$

Systems of equations written in operator notation.

System of equations

$$x_1 + 2x_2 = 4$$
$$3x_1 + 4x_2 = 7$$

$$A\overline{x} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \qquad A\overline{x} = \begin{pmatrix} 4 \\ 7 \end{pmatrix}$$

$$A\overline{x} = \begin{pmatrix} 4 \\ 7 \end{pmatrix}$$

Some differential equations we've seen, written in operator notation.

$$t\frac{dy}{dt} + 2y = 4t^2$$

$$L[y] = t\frac{dy}{dt} + 2y$$

$$L[y] = 4t^2$$

Systems of equations written in operator notation.

System of equations

$$x_1 + 2x_2 = 4$$
$$3x_1 + 4x_2 = 7$$

$$A\overline{x} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} \qquad A\overline{x} = \begin{pmatrix} 4 \\ 7 \end{pmatrix}$$

$$A\overline{x} = \begin{pmatrix} 4 \\ 7 \end{pmatrix}$$

Some differential equations we've seen, written in operator notation.

$$t\frac{dy}{dt} + 2y = 4t^2$$

$$L[y] = t\frac{dy}{dt} + 2y$$

$$L[y] = 4t^2$$

$$y'' + 4y' + 4y = 0$$

Systems of equations written in operator notation.

System of equations

$$x_1 + 2x_2 = 4$$
$$3x_1 + 4x_2 = 7$$

$$A\overline{x} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$A\overline{x} = \begin{pmatrix} 4 \\ 7 \end{pmatrix}$$

Some differential equations we've seen, written in operator notation.

$$t\frac{dy}{dt} + 2y = 4t^2$$

$$L[y] = t\frac{dy}{dt} + 2y$$

$$L[y] = 4t^2$$

$$y'' + 4y' + 4y = 0$$

$$L[y] = y'' + 4y' + 4y$$

Systems of equations written in operator notation.

System of equations

$$x_1 + 2x_2 = 4$$
$$3x_1 + 4x_2 = 7$$

$$A\overline{x} = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

$$A\overline{x} = \begin{pmatrix} 4 \\ 7 \end{pmatrix}$$

Some differential equations we've seen, written in operator notation.

$$t\frac{dy}{dt} + 2y = 4t^2$$

$$L[y] = t\frac{dy}{dt} + 2y$$

$$L[y] = 4t^2$$

$$y'' + 4y' + 4y = 0$$

$$L[y] = y'' + 4y' + 4y$$

$$L[y] = 0$$

A more detailed connection between matrix equations and DEs:

- A more detailed connection between matrix equations and DEs:
 - A vector as a function

- A more detailed connection between matrix equations and DEs:
 - A vector as a function

$$\bar{b} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$$

- A more detailed connection between matrix equations and DEs:
 - A vector as a function

$$\bar{b} = \begin{pmatrix} 1 \\ 3 \\ 2 \end{pmatrix}$$

- A more detailed connection between matrix equations and DEs:
 - A vector as a function

- A more detailed connection between matrix equations and DEs:
 - A vector as a function

$$\bar{b} = \begin{pmatrix} \sin(1) \\ \sin(2) \\ \sin(3) \\ \sin(4) \\ \sin(5) \\ \sin(6) \end{pmatrix}$$
• •

- A more detailed connection between matrix equations and DEs:
 - A vector as a function

$$\bar{b} = \begin{pmatrix} \sin(1) \\ \sin(2) \\ \sin(3) \\ \sin(4) \\ \sin(5) \\ \sin(6) \end{pmatrix}$$

A function is just a vector with an infinite number of entries.

$$y(t) = \sin(t)$$

- A more detailed connection between matrix equations and DEs:
 - A vector as a function

$$\bar{b} = \begin{pmatrix} \sin(1) \\ \sin(2) \\ \sin(3) \\ \sin(4) \\ \sin(5) \\ \sin(6) \end{pmatrix}$$

A function is just a vector with an infinite number of entries.

$$y(t) = \sin(t)$$

- A more detailed connection between matrix equations and DEs:
 - A vector as a function

$$\bar{b} = \begin{pmatrix} \sin(1) \\ \sin(2) \\ \sin(3) \\ \sin(4) \\ \sin(5) \\ \sin(6) \end{pmatrix}$$

A function is just a vector with an infinite number of entries.

$$y(t) = \sin(t)$$

• A differential operator is just a really big matrix.