Today

- Introduction to the Dirac delta function
- Modelling with delta-function forcing (tanks, springs)

Delta-function forcing

- Suppose a mass is sitting at position x and a force $\mathrm{g}(\mathrm{t})$ acts on it:

$$
m x^{\prime \prime}=g(t)
$$

- To find $\mathrm{x}(\mathrm{t})$, integrate up:

$$
\begin{gathered}
\int_{a}^{b} m x^{\prime \prime} d t=\int_{a}^{b} g(t) d t \\
\left.m x^{\prime}\right|_{a} ^{b}=\int_{a}^{b} g(t) d t \\
m v(b)-m v(a)=\int_{a}^{b} g(t) d t
\end{gathered}
$$

- $\int_{a}^{b} g(t) d t$ is the change in momentum of the mass - called impulse.
- If the force is large and sudden (say a hammer hitting the mass), maybe we just need to get this integral correct and the details don't matter.

Delta-function forcing

- Let's assume $g(t)= \begin{cases}\frac{I_{0}}{2 \tau} & -\tau<t<\tau \\ 0 & \text { otherwise }\end{cases}$

$$
=\left(u_{-\tau}(t)-u_{\tau}(t)\right) \frac{I_{0}}{2 \tau}
$$

$$
\text { impulse }=\Delta \text { momentum }=\int_{-\infty}^{\infty} g(t) d t=\int_{-\tau}^{\tau} \frac{I_{0}}{2 \tau} d t=I_{0}
$$

- For general purposes (any property that might change quickly, not just momentum), we define the Dirac Delta "function" as follows:

$$
\begin{aligned}
& d_{\tau}(t)=\left(u_{-\tau}(t)-u_{\tau}(t)\right) \frac{1}{2 \tau} \\
& \delta(t)=\lim _{\tau \rightarrow 0} d_{\tau}(t)=\left\{\begin{array}{cc}
" \infty " & \text { for } t=0, \\
0 & \text { for } t \neq 0 .
\end{array}\right.
\end{aligned}
$$

$$
g(t)=I_{0} d_{\tau}(t)
$$

- l_{0} can be replaced by any type of quantity
- e.g. mo mass added to tank suddenly
- units of $\delta(\mathrm{t}): 1 /$ time

Some facts about the Delta "function"

$$
\begin{aligned}
& \int_{a}^{b} \delta(t) d t=1 \quad a<0, b>0 \quad \text { and }=0 \text { otherwise. } \\
& \begin{aligned}
\int_{a}^{b} f(t) \delta(t) d t & =\lim _{\tau \rightarrow 0} \frac{1}{2 \tau} \int_{-\tau}^{\tau} f(t) d t \\
& =\lim _{\tau \rightarrow 0} \frac{F(\tau)-F(-\tau)}{2 \tau} \\
& =F^{\prime}(0)=f(0)
\end{aligned} \\
& \begin{aligned}
\int_{a}^{b} f(t) \delta(t) d t & =f(0) \quad F^{\prime}(t)=f(t)
\end{aligned} \\
& \begin{array}{r}
\delta(t-c)=\operatorname{shift} \text { of } \delta(t) \text { by c }
\end{array} \\
& \int_{a}^{b} f(t) \delta(t-c) d t=\int_{a+c}^{b+c} f(u+c) \delta(u) d u=f(c) \quad \text { and }=0 \text { otherwise. }
\end{aligned}
$$

Some facts about the Delta "function"

$$
\int_{a}^{b} f(t) \delta(t-c) d t=f(c)
$$

Laplace transform of delta function:

$$
\begin{aligned}
\mathcal{L}\{\delta(t-c)\} & =\int_{0}^{\infty} e^{-s t} \delta(t-c) d t \\
& =\int_{-c}^{\infty} e^{-s(u+c)} \delta(u) d u=e^{-s c} \text { for } c>0
\end{aligned}
$$

Relationship of delta function to other functions:

$$
\begin{aligned}
& \frac{d}{d t}|t-c|=u_{c}(t) \\
& \frac{d}{d t} u_{c}(t)=\delta(t-c)
\end{aligned}
$$

Delta-function forcing

- Water with $\mathrm{c}_{\mathrm{in}}=2 \mathrm{~g} / \mathrm{L}$ of sugar enters a tank at a rate of $r=1 \mathrm{~L} / \mathrm{min}$. The initially sugar-free tank holds $\mathrm{V}=5 \mathrm{~L}$ and the contents are well-mixed. Water drains from the tank at a rate r . At $\mathrm{t}_{\text {cube }}=3 \mathrm{~min}$, a sugar cube of mass $\mathrm{m}_{\text {cube }}=3 \mathrm{~g}$ is dropped into the tank.

Delta-function forcing

- Water with $\mathrm{c}_{\mathrm{in}}=2 \mathrm{~g} / \mathrm{L}$ of sugar enters a tank at a rate of $\mathrm{r}=1 \mathrm{~L} / \mathrm{min}$. The initially sugar-free tank holds $\mathrm{V}=5 \mathrm{~L}$ and the contents are well-mixed. Water drains from the tank at a rate r . At $\mathrm{t}_{\text {cube }}=3 \mathrm{~min}$, a sugar cube of mass $\mathrm{m}_{\text {cube }}=3 \mathrm{~g}$ is dropped into the tank.
- Sketch the mass of salt in the tank as a function of time (from intuition).

Delta-function forcing

- Water with $\mathrm{c}_{\mathrm{in}}=2 \mathrm{~g} / \mathrm{L}$ of sugar enters a tank at a rate of $\mathrm{r}=1 \mathrm{~L} / \mathrm{min}$. The initially sugar-free tank holds $\mathrm{V}=5 \mathrm{~L}$ and the contents are well-mixed. Water drains from the tank at a rate r . At $\mathrm{t}_{\text {cube }}=3 \mathrm{~min}$, a sugar cube of mass $\mathrm{m}_{\text {cube }}=3 \mathrm{~g}$ is dropped into the tank.
- Sketch the mass of salt in the tank as a function of time (from intuition).
- Write down an ODE for the mass of sugar in the tank as a function of time.

Delta-function forcing

- Water with $\mathrm{c}_{\mathrm{in}}=2 \mathrm{~g} / \mathrm{L}$ of sugar enters a tank at a rate of $\mathrm{r}=1 \mathrm{~L} / \mathrm{min}$. The initially sugar-free tank holds $\mathrm{V}=5 \mathrm{~L}$ and the contents are well-mixed. Water drains from the tank at a rate r . At $\mathrm{t}_{\text {cube }}=3 \mathrm{~min}$, a sugar cube of mass $\mathrm{m}_{\text {cube }}=3 \mathrm{~g}$ is dropped into the tank.
- Sketch the mass of salt in the tank as a function of time (from intuition).
- Write down an ODE for the mass of sugar in the tank as a function of time.

$$
m^{\prime}=r c_{i n}-\frac{r}{V} m+m_{c u b e} \delta\left(t-t_{c u b e}\right)
$$

Delta-function forcing

- Water with $\mathrm{c}_{\mathrm{in}}=2 \mathrm{~g} / \mathrm{L}$ of sugar enters a tank at a rate of $\mathrm{r}=1 \mathrm{~L} / \mathrm{min}$. The initially sugar-free tank holds $\mathrm{V}=5 \mathrm{~L}$ and the contents are well-mixed. Water drains from the tank at a rate r . At $\mathrm{t}_{\text {cube }}=3 \mathrm{~min}$, a sugar cube of mass $\mathrm{m}_{\text {cube }}=3 \mathrm{~g}$ is dropped into the tank.
- Sketch the mass of salt in the tank as a function of time (from intuition).
- Write down an ODE for the mass of sugar in the tank as a function of time.

$$
m^{\prime}=r c_{i n}-\frac{r}{V} m+m_{c u b e} \delta\left(t-t_{c u b e}\right)
$$

- Note: $\delta(\mathrm{t})$ has units of $1 /$ time.

Delta-function forcing

- Water with $\mathrm{c}_{\mathrm{in}}=2 \mathrm{~g} / \mathrm{L}$ of sugar enters a tank at a rate of $r=1 \mathrm{~L} / \mathrm{min}$. The initially sugar-free tank holds $\mathrm{V}=5 \mathrm{~L}$ and the contents are well-mixed. Water drains from the tank at a rate r . At $\mathrm{t}_{\text {cube }}=3 \mathrm{~min}$, a sugar cube of mass $\mathrm{m}_{\text {cube }}=3 \mathrm{~g}$ is dropped into the tank.
- Sketch the mass of salt in the tank as a function of time (from intuition).
- Write down an ODE for the mass of sugar in the tank as a function of time.

$$
\begin{aligned}
m^{\prime} & =r c_{i n}-\frac{r}{V} m+m_{\text {cube }} \delta\left(t-t_{c u b e}\right) \\
m^{\prime} & =2-\frac{1}{5} m+3 \delta(t-3)
\end{aligned}
$$

Delta-function forcing

- Water with $\mathrm{c}_{\mathrm{in}}=2 \mathrm{~g} / \mathrm{L}$ of sugar enters a tank at a rate of $\mathrm{r}=1 \mathrm{~L} / \mathrm{min}$. The initially sugar-free tank holds $\mathrm{V}=5 \mathrm{~L}$ and the contents are well-mixed. Water drains from the tank at a rate r . At $\mathrm{t}_{\text {cube }}=3 \mathrm{~min}$, a sugar cube of mass $\mathrm{m}_{\text {cube }}=3 \mathrm{~g}$ is dropped into the tank.
- Sketch the mass of salt in the tank as a function of time (from intuition).
- Write down an ODE for the mass of sugar in the tank as a function of time.

$$
\begin{aligned}
m^{\prime} & =r c_{i n}-\frac{r}{V} m+m_{\text {cube }} \delta\left(t-t_{c u b e}\right) \\
m^{\prime} & =2-\frac{1}{5} m+3 \delta(t-3)
\end{aligned}
$$

- Solve the ODE.

Delta-function forcing

- Water with $\mathrm{c}_{\mathrm{in}}=2 \mathrm{~g} / \mathrm{L}$ of sugar enters a tank at a rate of $\mathrm{r}=1 \mathrm{~L} / \mathrm{min}$. The initially sugar-free tank holds $\mathrm{V}=5 \mathrm{~L}$ and the contents are well-mixed. Water drains from the tank at a rate r . At $\mathrm{t}_{\text {cube }}=3 \mathrm{~min}$, a sugar cube of mass $\mathrm{m}_{\text {cube }}=3 \mathrm{~g}$ is dropped into the tank.
- Sketch the mass of salt in the tank as a function of time (from intuition).
- Write down an ODE for the mass of sugar in the tank as a function of time.

$$
\begin{aligned}
m^{\prime} & =r c_{i n}-\frac{r}{V} m+m_{\text {cube }} \delta\left(t-t_{c u b e}\right) \\
m^{\prime} & =2-\frac{1}{5} m+3 \delta(t-3)
\end{aligned}
$$

- Solve the ODE.

$$
m(t)=10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5}
$$

Delta-function forcing

- Water with $\mathrm{c}_{\mathrm{in}}=2 \mathrm{~g} / \mathrm{L}$ of sugar enters a tank at a rate of $\mathrm{r}=1 \mathrm{~L} / \mathrm{min}$. The initially sugar-free tank holds $\mathrm{V}=5 \mathrm{~L}$ and the contents are well-mixed. Water drains from the tank at a rate r . At $\mathrm{t}_{\text {cube }}=3 \mathrm{~min}$, a sugar cube of mass $\mathrm{m}_{\text {cube }}=3 \mathrm{~g}$ is dropped into the tank.
- Sketch the mass of salt in the tank as a function of time (from intuition).
- Write down an ODE for the mass of sugar in the tank as a function of time.

$$
\begin{aligned}
m^{\prime} & =r c_{i n}-\frac{r}{V} m+m_{\text {cube }} \delta\left(t-t_{c u b e}\right) \\
m^{\prime} & =2-\frac{1}{5} m+3 \delta(t-3)
\end{aligned}
$$

- Solve the ODE.

$$
m(t)=10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5}
$$

- Sketch the solution to the ODE. How would
 it differ if $\mathrm{t}_{\text {cube }}=10 \mathrm{~min}$?

Delta-function forcing

- Sketch the solution to the ODE.

$$
m(t)=10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5}
$$

Delta-function forcing

- Sketch the solution to the ODE.

$$
\begin{aligned}
m(t) & =10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5} \\
& =\left\{\begin{array}{cl}
10\left(1-e^{-t / 5}\right) & \text { for } t<3 \\
10-\left(10-3 e^{3 / 5}\right) e^{-t / 5} & \text { for } t \geq 3
\end{array}\right.
\end{aligned}
$$

Delta-function forcing

- Sketch the solution to the ODE.

$$
\begin{aligned}
m(t) & =10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5} \\
& =\left\{\begin{array}{cl}
10\left(1-e^{-t / 5}\right) & \text { for } t<3 \\
10-\left(10-3 e^{3 / 5}\right) e^{-t / 5} & \text { for } t \geq 3
\end{array}\right.
\end{aligned}
$$

Delta-function forcing

- Sketch the solution to the ODE.

$$
\begin{aligned}
m(t) & =10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5} \\
& =\left\{\begin{array}{cl}
10\left(1-e^{-t / 5}\right) & \text { for } t<3 \\
10-\left(10-3 e^{3 / 5}\right) e^{-t / 5} & \text { for } t \geq 3
\end{array}\right.
\end{aligned}
$$

Delta-function forcing

- Sketch the solution to the ODE.

$$
\begin{aligned}
m(t) & =10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5} \\
& =\left\{\begin{array}{cl}
10\left(1-e^{-t / 5}\right) & \text { for } t<3 \\
10-\left(10-3 e^{3 / 5}\right) e^{-t / 5} & \text { for } t \geq 3
\end{array}\right.
\end{aligned}
$$

Delta-function forcing

- Sketch the solution to the ODE.

$$
\begin{aligned}
m(t) & =10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5} \\
& =\left\{\begin{array}{cl}
10\left(1-e^{-t / 5}\right) & \text { for } t<3 \\
10-\left(10-3 e^{3 / 5}\right) e^{-t / 5} & \text { for } t \geq 3
\end{array}\right.
\end{aligned}
$$

Delta-function forcing

- Sketch the solution to the ODE.

$$
\begin{aligned}
m(t) & =10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5} \\
& =\left\{\begin{array}{cl}
10\left(1-e^{-t / 5}\right) & \text { for } t<3 \\
10-\left(10-3 e^{3 / 5}\right) e^{-t / 5} & \text { for } t \geq 3
\end{array}\right.
\end{aligned}
$$

Delta-function forcing

- Sketch the solution to the ODE.

$$
\begin{aligned}
& m(t)=10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5} \\
& =\left\{\begin{array}{cl}
10\left(1-e^{-t / 5}\right) & \text { for } t<3, \\
10-\left(10-3 e^{3 / 5}\right) e^{-t / 5} & \text { for } t \geq 3 .
\end{array}\right.
\end{aligned}
$$

Delta-function forcing

- Sketch the solution to the ODE.

Delta-function forcing

- Sketch the solution to the ODE.

$$
\begin{aligned}
m(t) & =10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5} \\
& =\left\{\begin{array}{cl}
10\left(1-e^{-t / 5}\right) & \text { for } t<3 \\
10-\left(10-3 e^{3 / 5}\right) e^{-t / 5} & \text { for } t \geq 3
\end{array}\right.
\end{aligned}
$$

$$
10{\underset{f}{m}}_{\text {m(t) }}^{\text {- }}
$$

Delta-function forcing

- Sketch the solution to the ODE.

$$
\begin{aligned}
m(t) & =10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5} \\
& =\left\{\begin{array}{cl}
10\left(1-e^{-t / 5}\right) & \text { for } t<3 \\
10-\left(10-3 e^{3 / 5}\right) e^{-t / 5} & \text { for } t \geq 3
\end{array}\right.
\end{aligned}
$$

Delta-function forcing

- Sketch the solution to the ODE.

$$
\begin{aligned}
m(t) & =10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5} \\
& =\left\{\begin{array}{cl}
10\left(1-e^{-t / 5}\right) & \text { for } t<3 \\
10-\left(10-3 e^{3 / 5}\right) e^{-t / 5} & \text { for } t \geq 3
\end{array}\right.
\end{aligned}
$$

- How would it differ if $\mathrm{t}_{\text {cube }}=10 \mathrm{~min}$?

Delta-function forcing

- Sketch the solution to the ODE.

$$
\begin{aligned}
m(t) & =10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5} \\
& =\left\{\begin{array}{cl}
10\left(1-e^{-t / 5}\right) & \text { for } t<3 \\
10-\left(10-3 e^{3 / 5}\right) e^{-t / 5} & \text { for } t \geq 3
\end{array}\right.
\end{aligned}
$$

- How would it differ if $\mathrm{t}_{\text {cube }}=10 \mathrm{~min}$?

Delta-function forcing

- Sketch the solution to the ODE.

$$
\begin{aligned}
m(t) & =10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5} \\
& =\left\{\begin{array}{cl}
10\left(1-e^{-t / 5}\right) & \text { for } t<3 \\
10-\left(10-3 e^{3 / 5}\right) e^{-t / 5} & \text { for } t \geq 3
\end{array}\right.
\end{aligned}
$$

- How would it differ if $\mathrm{t}_{\text {cube }}=10 \mathrm{~min}$?

Delta-function forcing

- Sketch the solution to the ODE.

$$
\begin{aligned}
m(t) & =10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5} \\
& =\left\{\begin{array}{cl}
10\left(1-e^{-t / 5}\right) & \text { for } t<3 \\
10-\left(10-3 e^{3 / 5}\right) e^{-t / 5} & \text { for } t \geq 3
\end{array}\right.
\end{aligned}
$$

- How would it differ if $\mathrm{t}_{\text {cube }}=10 \mathrm{~min}$?

Delta-function forcing

- Sketch the solution to the ODE.

$$
\begin{aligned}
m(t) & =10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5} \\
& =\left\{\begin{array}{cl}
10\left(1-e^{-t / 5}\right) & \text { for } t<3 \\
10-\left(10-3 e^{3 / 5}\right) e^{-t / 5} & \text { for } t \geq 3
\end{array}\right.
\end{aligned}
$$

- How would it differ if $\mathrm{t}_{\text {cube }}=10 \mathrm{~min}$?

Delta-function forcing

- Sketch the solution to the ODE.

$$
\begin{aligned}
m(t) & =10\left(1-e^{-t / 5}\right)+3 u_{3}(t) e^{-(t-3) / 5} \\
& =\left\{\begin{array}{cl}
10\left(1-e^{-t / 5}\right) & \text { for } t<3 \\
10-\left(10-3 e^{3 / 5}\right) e^{-t / 5} & \text { for } t \geq 3
\end{array}\right.
\end{aligned}
$$

- How would it differ if $\mathrm{t}_{\text {cube }}=10 \mathrm{~min}$?

Delta-function forcing

- A hammer hits a mass-spring system imparting an impulse of $I_{0}=2 \mathrm{~N} \mathrm{~s}$ at $t=5 \mathrm{~s}$. The mass of the block is $m=1 \mathrm{~kg}$. The drag coefficient is $\gamma=2 \mathrm{~kg} / \mathrm{s}$ and the spring constant is $k=10 \mathrm{~kg} / \mathrm{s}^{2}$. The mass is initially at $y(0)=2 \mathrm{~m}$ with velocity $y^{\prime}(0)=0 \mathrm{~m} / \mathrm{s}$.

Delta-function forcing

- A hammer hits a mass-spring system imparting an impulse of $I_{0}=2 \mathrm{~N} \mathrm{~s}$ at $t=5 \mathrm{~s}$. The mass of the block is $m=1 \mathrm{~kg}$. The drag coefficient is $\gamma=2 \mathrm{~kg} / \mathrm{s}$ and the spring constant is $k=10 \mathrm{~kg} / \mathrm{s}^{2}$. The mass is initially at $y(0)=2 \mathrm{~m}$ with velocity $y^{\prime}(0)=0 \mathrm{~m} / \mathrm{s}$.

Delta-function forcing

- A hammer hits a mass-spring system imparting an impulse of $I_{0}=2 \mathrm{~N} \mathrm{~s}$ at $t=5 \mathrm{~s}$. The mass of the block is $m=1 \mathrm{~kg}$. The drag coefficient is $\gamma=2 \mathrm{~kg} / \mathrm{s}$ and the spring constant is $k=10 \mathrm{~kg} / \mathrm{s}^{2}$. The mass is initially at $y(0)=2 \mathrm{~m}$ with velocity $y^{\prime}(0)=0 \mathrm{~m} / \mathrm{s}$.
- Write down an equation for the position of the mass.

Delta-function forcing

- A hammer hits a mass-spring system imparting an impulse of $I_{0}=2 \mathrm{~N} \mathrm{~s}$ at $t=5 \mathrm{~s}$. The mass of the block is $m=1 \mathrm{~kg}$. The drag coefficient is $\gamma=2 \mathrm{~kg} / \mathrm{s}$ and the spring constant is $k=10 \mathrm{~kg} / \mathrm{s}^{2}$. The mass is initially at $y(0)=2 \mathrm{~m}$ with velocity $y^{\prime}(0)=0 \mathrm{~m} / \mathrm{s}$.
- Write down an equation for the position of the mass.
(A) $y^{\prime \prime}+2 y^{\prime}+10 y=2 u_{0}(t)$
(B) $y^{\prime \prime}+2 y^{\prime}+10 y=2 u_{5}(t)$
(C) $y^{\prime \prime}+2 y^{\prime}+10 y=2 \delta(t)$
(D) $y^{\prime \prime}+2 y^{\prime}+10 y=2 \delta(t-5)$

Delta-function forcing

- A hammer hits a mass-spring system imparting an impulse of $I_{0}=2 \mathrm{~N} \mathrm{~s}$ at $t=5 \mathrm{~s}$. The mass of the block is $m=1 \mathrm{~kg}$. The drag coefficient is $\gamma=2 \mathrm{~kg} / \mathrm{s}$ and the spring constant is $k=10 \mathrm{~kg} / \mathrm{s}^{2}$. The mass is initially at $y(0)=2 \mathrm{~m}$ with velocity $y^{\prime}(0)=0 \mathrm{~m} / \mathrm{s}$.
- Write down an equation for the position of the mass.

$$
\begin{aligned}
\text { (A) } y^{\prime \prime}+2 y^{\prime}+10 y & =2 u_{0}(t) \\
\text { (B) } y^{\prime \prime}+2 y^{\prime}+10 y & =2 u_{5}(t) \\
\text { (C) } y^{\prime \prime}+2 y^{\prime}+10 y & =2 \delta(t) \\
\text { (D) } y^{\prime \prime}+2 y^{\prime}+10 y & =2 \delta(t-5)
\end{aligned}
$$

Delta-function forcing

- A hammer hits a mass-spring system imparting an impulse of $I_{0}=2 \mathrm{~N} \mathrm{~s}$ at $t=5 \mathrm{~s}$. The mass of the block is $m=1 \mathrm{~kg}$. The drag coefficient is $\gamma=2 \mathrm{~kg} / \mathrm{s}$ and the spring constant is $k=10 \mathrm{~kg} / \mathrm{s}^{2}$. The mass is initially at $y(0)=2 \mathrm{~m}$ with velocity $y^{\prime}(0)=0 \mathrm{~m} / \mathrm{s}$.
- Write down an equation for the position of the mass.

$$
\begin{aligned}
& \text { (A) } y^{\prime \prime}+2 y^{\prime}+10 y=2 u_{0}(t) \\
& \text { (B) } y^{\prime \prime}+2 y^{\prime}+10 y=2 u_{5}(t) \\
& \text { (C) } y^{\prime \prime}+2 y^{\prime}+10 y=2 \delta(t) \\
& \text { (D) } y^{\prime \prime}+2 y^{\prime}+10 y=2 \delta(t-5) \\
& s^{2} Y-2 s+2 s Y-4+10 Y=2 e^{-5 c}
\end{aligned}
$$

Delta-function forcing

- A hammer hits a mass-spring system imparting an impulse of $I_{0}=2 \mathrm{~N} \mathrm{~s}$ at $t=5 \mathrm{~s}$. The mass of the block is $m=1 \mathrm{~kg}$. The drag coefficient is $\gamma=2 \mathrm{~kg} / \mathrm{s}$ and the spring constant is $k=10 \mathrm{~kg} / \mathrm{s}^{2}$. The mass is initially at $y(0)=2 \mathrm{~m}$ with velocity $y^{\prime}(0)=0 \mathrm{~m} / \mathrm{s}$.
- Write down an equation for the position of the mass.

$$
\begin{gathered}
\text { (A) } y^{\prime \prime}+2 y^{\prime}+10 y=2 u_{0}(t) \\
\text { (B) } y^{\prime \prime}+2 y^{\prime}+10 y=2 u_{5}(t) \\
\text { (C) } y^{\prime \prime}+2 y^{\prime}+10 y=2 \delta(t) \\
\text { (D) } y^{\prime \prime}+2 y^{\prime}+10 y=2 \delta(t-5) \\
s^{2} Y-2 s+2 s Y-4+10 Y=2 e^{-5 c} \\
Y(s)=\frac{2\left(e^{-5 s}+s+2\right)}{s^{2}+2 s+10}
\end{gathered}
$$

Delta-function forcing

- Inverting $\mathrm{Y}(\mathrm{s}) \ldots$ (go through this on your own)

$$
\begin{aligned}
Y(s) & =\frac{2\left(e^{-5 s}+s+2\right)}{s^{2}+2 s+10}=\frac{2 e^{-5 s}}{s^{2}+2 s+10}+2 \frac{s+2}{s^{2}+2 s+10} \\
& =\frac{2 e^{-5 s}}{s^{2}+2 s+10}+2 \frac{s+2}{(s+1)^{2}+9} \\
& =\frac{2 e^{-5 s}}{s^{2}+2 s+10}+2 \frac{s+1}{(s+1)^{2}+9}+\frac{2}{(s+1)^{2}+9} \\
& =\frac{2 e^{-5 s}}{s^{2}+2 s+10}+2 \frac{s+1}{(s+1)^{2}+9}+\frac{2}{3} \frac{3}{(s+1)^{2}+9} \\
& =\frac{2}{3} \frac{3 e^{-5 s}}{(s+1)^{2}+9}+2 \frac{s+1}{(s+1)^{2}+9}+\frac{2}{3} \frac{3}{(s+1)^{2}+9} \\
y(t) & =\frac{2}{3} u_{5}(t) e^{-(t-5)} \sin (3(t-5))+\frac{2 e^{-t} \cos (3 t)+\frac{2}{3} e^{-t} \sin (3 t)}{\text { particular solution from } \delta \text { forcing }} \frac{\text { homogeneous part }}{}
\end{aligned}
$$

