Today

- Shapes of solutions for distinct eigenvalues case.
- General solution for complex eigenvalues case.
- Shapes of solutions for complex eigenvalues case.
- Office hours: Friday 1-2 pm, Monday 1-3 pm (to be confirmed)

Shapes of solution curves in the phase plane

- When matrix A has distinct eigenvalues, the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$ is

$$
\mathbf{x}=C_{1} e^{\lambda_{1} t} \mathbf{v}_{\mathbf{1}}+C_{2} e^{\lambda_{2} t} \mathbf{v}_{\mathbf{2}}
$$

-What do solutions look like in the $\mathrm{x}_{1}-\mathrm{x}_{2}$ plane (called the phase plane)?

Shapes of solution curves in the phase plane

- When matrix A has distinct eigenvalues, the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$ is

$$
\mathbf{x}=C_{1} e^{\lambda_{1} t} \mathbf{v}_{\mathbf{1}}+C_{2} e^{\lambda_{2} t} \mathbf{v}_{\mathbf{2}}
$$

-What do solutions look like in the $\mathrm{x}_{1}-\mathrm{x}_{2}$ plane (called the phase plane)?

- If the initial condition is an eigenvector, then the solution is a straight line. Example:

$$
\begin{array}{ll}
x_{1}^{\prime}=x_{1}+x_{2} & x_{1}(0)=6 \\
x_{2}^{\prime}=4 x_{1}+x_{2} & x_{2}(0)=-12
\end{array}
$$

Shapes of solution curves in the phase plane

- When matrix A has distinct eigenvalues, the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$ is

$$
\mathbf{x}=C_{1} e^{\lambda_{1} t} \mathbf{v}_{\mathbf{1}}+C_{2} e^{\lambda_{2} t} \mathbf{v}_{\mathbf{2}}
$$

-What do solutions look like in the $\mathrm{x}_{1}-\mathrm{x}_{2}$ plane (called the phase plane)?

- If the initial condition is an eigenvector, then the solution is a straight line. Example:

$$
\begin{array}{ll}
x_{1}^{\prime}=x_{1}+x_{2} & x_{1}(0)=6 \\
x_{2}^{\prime}=4 x_{1}+x_{2} & x_{2}(0)=-12
\end{array}
$$

$$
\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2}
$$

Shapes of solution curves in the phase plane

- When matrix A has distinct eigenvalues, the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$ is

$$
\mathbf{x}=C_{1} e^{\lambda_{1} t} \mathbf{v}_{\mathbf{1}}+C_{2} e^{\lambda_{2} t} \mathbf{v}_{\mathbf{2}}
$$

- What do solutions look like in the $\mathrm{x}_{1}-\mathrm{x}_{2}$ plane (called the phase plane)?
- If the initial condition is an eigenvector, then the solution is a straight line. Example:

$$
\begin{array}{ll}
x_{1}^{\prime}=x_{1}+x_{2} & x_{1}(0)=6 \\
x_{2}^{\prime}=4 x_{1}+x_{2} & x_{2}(0)=-12
\end{array}
$$

$$
\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2}
$$

$$
\binom{x_{1}(0)}{x_{2}(0)}=C_{1}\binom{1}{-2}+C_{2}\binom{1}{2}
$$

Shapes of solution curves in the phase plane

- When matrix A has distinct eigenvalues, the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$ is

$$
\mathbf{x}=C_{1} e^{\lambda_{1} t} \mathbf{v}_{\mathbf{1}}+C_{2} e^{\lambda_{2} t} \mathbf{v}_{\mathbf{2}}
$$

- What do solutions look like in the $\mathrm{x}_{1}-\mathrm{x}_{2}$ plane (called the phase plane)?
- If the initial condition is an eigenvector, then the solution is a straight line. Example:

$$
\begin{array}{ll}
x_{1}^{\prime}=x_{1}+x_{2} & x_{1}(0)=6 \\
x_{2}^{\prime}=4 x_{1}+x_{2} & x_{2}(0)=-12
\end{array}
$$

$$
\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2}
$$

$$
\binom{x_{1}(0)}{x_{2}(0)}=C_{1}\binom{1}{-2}+C_{2}\binom{1}{2}=\binom{6}{-12}
$$

Shapes of solution curves in the phase plane

- When matrix A has distinct eigenvalues, the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$ is

$$
\mathbf{x}=C_{1} e^{\lambda_{1} t} \mathbf{v}_{\mathbf{1}}+C_{2} e^{\lambda_{2} t} \mathbf{v}_{\mathbf{2}}
$$

- What do solutions look like in the $\mathrm{x}_{1}-\mathrm{x}_{2}$ plane (called the phase plane)?
- If the initial condition is an eigenvector, then the solution is a straight line. Example:

$$
\begin{array}{ll}
x_{1}^{\prime}=x_{1}+x_{2} & x_{1}(0)=6 \\
x_{2}^{\prime}=4 x_{1}+x_{2} & x_{2}(0)=-12
\end{array}
$$

$$
\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2}
$$

$$
\binom{x_{1}(0)}{x_{2}(0)}=C_{1}\binom{1}{-2}+C_{2}\binom{1}{2}=\binom{6}{-12}
$$

$$
C_{1}=6, C_{2}=0
$$

Shapes of solution curves in the phase plane

- When matrix A has distinct eigenvalues, the general solution to $\mathbf{x}^{\prime}=A \mathbf{x}$ is

$$
\mathbf{x}=C_{1} e^{\lambda_{1} t} \mathbf{v}_{\mathbf{1}}+C_{2} e^{\lambda_{2} t} \mathbf{v}_{\mathbf{2}}
$$

- What do solutions look like in the $\mathrm{x}_{1}-\mathrm{x}_{2}$ plane (called the phase plane)?
- If the initial condition is an eigenvector, then the solution is a straight line. Example:

$$
\begin{array}{ll}
x_{1}^{\prime}=x_{1}+x_{2} & x_{1}(0)=6 \\
x_{2}^{\prime}=4 x_{1}+x_{2} & x_{2}(0)=-12
\end{array}
$$

$$
\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2}
$$

Shapes of so

- When matrix $\mathrm{A} h$
- What do solution
- If the initial condi Example:

plane

plution to $\mathbf{x}^{\prime}=A \mathbf{x}$ is

$$
\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2}
$$

Shapes of so

- When matrix A h
- What do solution
- If the initial condi Example:

plane

plution to $\mathbf{x}^{\prime}=A \mathbf{x}$ is
he phase plane)? on is a straight line.

$$
\left.\begin{array}{l}
\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2} \\
\binom{x_{1}(0)}{x_{2}(0)}=C_{1}\binom{1}{-2}+C_{2}\binom{1}{2}=\binom{6}{-12} \quad \begin{array}{l}
\text { •IVP solution: } \\
C_{1}=6, C_{2}=0
\end{array} \\
x_{2}
\end{array}\right)=e^{-t}\binom{6}{-12} .
$$

Shapes of so

- When matrix A h
- What do solution
- If the initial condi Example:

plane

plution to $\mathbf{x}^{\prime}=A \mathbf{x}$ is
he phase plane)? on is a straight line.

$$
\left.\begin{array}{l}
\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2} \\
\binom{x_{1}(0)}{x_{2}(0)}=C_{1}\binom{1}{-2}+C_{2}\binom{1}{2}=\binom{6}{-12} \quad \begin{array}{l}
\text { •IVP solution: } \\
C_{1}=6, C_{2}=0
\end{array} \\
x_{2}
\end{array}\right)=e^{-t}\binom{6}{-12} .
$$

Shapes of so

- When matrix A h
- What do solution
- If the initial condi Example:
plane
plution to $x^{\prime}=A \mathbf{x}$ is
he phase plane)?
on is a straight line.
6
-12

$$
\begin{aligned}
& \binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2} \\
& \left.\binom{x_{1}(0)}{x_{2}(0)}=C_{1}\binom{1}{-2}+C_{2}\binom{1}{2}=\binom{6}{-12} \quad \begin{array}{l}
\text { •IVP solution: } \\
C_{1}=6, C_{2}=0 \\
x_{2}
\end{array}\right)=e^{-t}\binom{6}{-12}
\end{aligned}
$$

Shapes of so

- When matrix A h
- What do solution
- If the initial condi Example:
plane
plution to $x^{\prime}=A \mathbf{x}$ is
ee phase plane)?
on is a straight line.
6
-12

$$
\begin{aligned}
& \binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2} \\
& \left.\binom{x_{1}(0)}{x_{2}(0)}=C_{1}\binom{1}{-2}+C_{2}\binom{1}{2}=\binom{6}{-12} \quad \begin{array}{l}
\text { •IVP solution: } \\
C_{1}=6, C_{2}=0 \\
x_{2}
\end{array}\right)=e^{-t}\binom{6}{-12}
\end{aligned}
$$

Shapes of so

- When matrix A h
- What do solution
- If the initial condi Example:
plane
plution to $x^{\prime}=A \mathbf{x}$ is
ee phase plane)?
on is a straight line.
6
-12

$$
\begin{aligned}
& \binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2} \\
& \left.\binom{x_{1}(0)}{x_{2}(0)}=C_{1}\binom{1}{-2}+C_{2}\binom{1}{2}=\binom{6}{-12} \quad \begin{array}{l}
\text { •IVP solution: } \\
C_{1}=6, C_{2}=0 \\
x_{2}
\end{array}\right)=e^{-t}\binom{6}{-12}
\end{aligned}
$$

Shapes of so

- When matrix A h
- What do solution
- If the initial condi Example:
plane
plution to $x^{\prime}=A \mathbf{x}$ is
ee phase plane)?
on is a straight line.
6
-12

$$
\begin{aligned}
& \binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2} \\
& \left.\binom{x_{1}(0)}{x_{2}(0)}=C_{1}\binom{1}{-2}+C_{2}\binom{1}{2}=\binom{6}{-12} \quad \begin{array}{l}
\text { •IVP solution: } \\
C_{1}=6, C_{2}=0 \\
x_{2}
\end{array}\right)=e^{-t}\binom{6}{-12}
\end{aligned}
$$

Shapes of so

- When matrix A h
- What do solution
- If the initial condi Example:
plane
plution to $x^{\prime}=A \mathbf{x}$ is
ee phase plane)?
on is a straight line.
6
-12

$$
\begin{aligned}
& \binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2} \\
& \left.\binom{x_{1}(0)}{x_{2}(0)}=C_{1}\binom{1}{-2}+C_{2}\binom{1}{2}=\binom{6}{-12} \quad \begin{array}{l}
\text { •IVP solution: } \\
C_{1}=6, C_{2}=0 \\
x_{2}
\end{array}\right)=e^{-t}\binom{6}{-12}
\end{aligned}
$$

Shapes of so

- When matrix A h
- What do solution
- If the initial condi Example:
plane
plution to $x^{\prime}=A \mathbf{x}$ is
he phase plane)?
on is a straight line.
6
-12

$$
\begin{aligned}
& \binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2} \\
& \left.\binom{x_{1}(0)}{x_{2}(0)}=C_{1}\binom{1}{-2}+C_{2}\binom{1}{2}=\binom{6}{-12} \quad \begin{array}{l}
\text { •IVP solution: } \\
C_{1}=6, C_{2}=0 \\
x_{2}
\end{array}\right)=e^{-t}\binom{6}{-12}
\end{aligned}
$$

Shapes of so

- When matrix A h
- What do solution
- If the initial condi Example:
plane
plution to $x^{\prime}=A \mathbf{x}$ is
he phase plane)? on is a straight line.

$$
\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2}
$$

$$
\begin{gathered}
\left.\binom{x_{1}(0)}{x_{2}(0)}=C_{1}\binom{1}{-2}+C_{2}\binom{1}{2}=\binom{6}{-12} \quad \begin{array}{l}
\bullet \text { IVP solution: } \\
C_{1}=6, C_{2}=0
\end{array}\right)=e^{-t}\binom{6}{x_{2}}
\end{gathered}
$$

Shapes of so

- When matrix A h
- What do solution
- If the initial condi Example:
plane
plution to $x^{\prime}=A \mathbf{x}$ is
he phase plane)? on is a straight line.

$$
\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2}
$$

$$
\begin{gathered}
\left.\binom{x_{1}(0)}{x_{2}(0)}=C_{1}\binom{1}{-2}+C_{2}\binom{1}{2}=\binom{6}{-12} \quad \begin{array}{l}
\bullet \text { IVP solution: } \\
C_{1}=6, C_{2}=0
\end{array}\right)=e^{-t}\binom{6}{x_{2}}
\end{gathered}
$$

Shapes of so

- When matrix Ah
- What do solution
- If the initial condi Example:
plane
plution to $x^{\prime}=A \mathbf{x}$ is
he phase plane)?
on is a straight line.
6
-12

$$
\begin{gathered}
\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2} \\
\left.\binom{x_{1}(0)}{x_{2}(0)}=C_{1}\binom{1}{-2}+C_{2}\binom{1}{2}=\binom{6}{-12} \quad \begin{array}{l}
\text { IVP solution: } \\
C_{1}=6, C_{2}=0
\end{array}\right)=e^{-t}\binom{6}{x_{2}}
\end{gathered}
$$

Shapes of so

- When matrix A h
- What do solution
- If the initial condi Example:
plane
plution to $x^{\prime}=A \mathbf{x}$ is
he phase plane)? on is a straight line.

$$
\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2}
$$

$$
\begin{gathered}
\left.\binom{x_{1}(0)}{x_{2}(0)}=C_{1}\binom{1}{-2}+C_{2}\binom{1}{2}=\binom{6}{-12} \quad \begin{array}{l}
\bullet \text { IVP solution: } \\
\binom{x_{1}}{x_{2}}=e^{-t}\binom{6}{-12}
\end{array}\right) . C_{2}=0
\end{gathered}
$$

Shapes of so

- When matrix A h
- What do solution
- If the initial condi Example:
plane
plution to $\mathbf{x}^{\prime}=A \mathbf{x}$ is
he phase plane)? on is a straight line.

$$
\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2}
$$

$$
\begin{gathered}
\left.\binom{x_{1}(0)}{x_{2}(0)}=C_{1}\binom{1}{-2}+C_{2}\binom{1}{2}=\binom{6}{-12} \quad \begin{array}{l}
\text { •IVP solution: } \\
C_{1}=6, C_{2}=0
\end{array}\right)=e^{-t}\binom{6}{x_{2}}
\end{gathered}
$$

Shapes of so

- When matrix A h
- What do solution
- If the initial condi Example:
plane
plution to $x^{\prime}=A \mathbf{x}$ is
he phase plane)? on is a straight line.

$$
\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2}
$$

$$
\begin{gathered}
\left.\binom{x_{1}(0)}{x_{2}(0)}=C_{1}\binom{1}{-2}+C_{2}\binom{1}{2}=\binom{6}{-12} \quad \begin{array}{l}
\bullet \text { IVP solution: } \\
C_{1}=6, C_{2}=0
\end{array}\right)=e^{-t}\binom{6}{x_{2}}
\end{gathered}
$$

Shapes of so

- When matrix A h
- What do solution
- If the initial condi Example:

plane

plution to $x^{\prime}=A x$ is
he phase plane)? on is a straight line.

$$
\begin{gathered}
\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2} \\
\binom{x_{1}(0)}{x_{2}(0)}=C_{1}\binom{1}{-2}+C_{2}\binom{1}{2}=\binom{6}{-12} \quad \begin{array}{l}
\text { •IVP solution: } \\
\binom{x_{1}}{x_{2}}=e^{-t}\binom{6}{-12} \\
C_{1}=6, C_{2}=0
\end{array}
\end{gathered}
$$

Shapes of so

- When matrix A h
- What do solution
- If the initial condi Example:

plane

plution to $x^{\prime}=A x$ is
he phase plane)? on is a straight line.

$$
\begin{gathered}
\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2} \\
\binom{x_{1}(0)}{x_{2}(0)}=C_{1}\binom{1}{-2}+C_{2}\binom{1}{2}=\binom{6}{-12} \quad \text { •IVP solution: } \\
C_{1}=6, C_{2}=0
\end{gathered}
$$

Shapes of so

- When matrix A h
- What do solution
- If the initial condi Example:

plane

plution to $x^{\prime}=A x$ is
on is a straight line.
6
-12

$$
\begin{gathered}
\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2} \\
\binom{x_{1}(0)}{x_{2}(0)}=C_{1}\binom{1}{-2}+C_{2}\binom{1}{2}=\binom{6}{-12} \quad \begin{array}{l}
\text { IVP solution: } \\
C_{1}=6, C_{2}=0
\end{array} \\
\left.x_{2}\right)=e^{-t}\binom{6}{-12}
\end{gathered}
$$

Shapes of so

- When matrix A h
- What do solution
- If the initial condi Example:

plane

plution to $\mathbf{x}^{\prime}=A \mathbf{x}$ is
he phase plane)?
on is a straight line.

$$
\begin{gathered}
\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2} \\
\binom{x_{1}(0)}{x_{2}(0)}=C_{1}\binom{1}{-2}+C_{2}\binom{1}{2}=\binom{6}{-12} \quad \begin{array}{l}
\text { IVP solution: } \\
C_{1}=6, C_{2}=0
\end{array} \\
\left.x_{2}\right)=e^{-t}\binom{6}{-12}
\end{gathered}
$$

Shapes of so

- When matrix A h
- What do solution
- If the initial condi Example:

plane

plution to $\mathbf{x}^{\prime}=A \mathbf{x}$ is
he phase plane)?
on is a straight line.

$$
\begin{gathered}
\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2} \\
\binom{x_{1}(0)}{x_{2}(0)}=C_{1}\binom{1}{-2}+C_{2}\binom{1}{2}=\binom{6}{-12} \quad \begin{array}{l}
\text { •IVP solution: } \\
\binom{x_{1}}{x_{2}}=e^{-t}\binom{6}{-12} \\
C_{1}=6, C_{2}=0
\end{array}
\end{gathered}
$$

Shapes of so

- When matrix A h
- What do solution
- If the initial condi Example:

plane

plution to $\mathbf{x}^{\prime}=A \mathbf{x}$ is
he phase plane)?
on is a straight line.

$$
\begin{gathered}
\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2} \\
\binom{x_{1}(0)}{x_{2}(0)}=C_{1}\binom{1}{-2}+C_{2}\binom{1}{2}=\binom{6}{-12} \quad \begin{array}{l}
\text { •IVP solution: } \\
\binom{x_{1}}{x_{2}}=e^{-t}\binom{6}{-12} \\
C_{1}=6, C_{2}=0
\end{array}
\end{gathered}
$$

Shapes of so

- When matrix $\mathrm{A} h$
- What do solution
- If the initial condi Example:

plane

plution to $\mathbf{x}^{\prime}=\mathrm{Ax}$ is
he phase plane)?
on is a straight line.

$$
\begin{gathered}
\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2} \\
\binom{x_{1}(0)}{x_{2}(0)}=C_{1}\binom{1}{-2}+C_{2}\binom{1}{2}=\binom{6}{-12} \quad \begin{array}{l}
\text { •IVP solution: } \\
\binom{x_{1}}{x_{2}}=e^{-t}\binom{6}{-12}
\end{array} \\
C_{1}=6, C_{2}=0
\end{gathered}
$$

Shapes of so

- When matrix $\mathrm{A} h$
- What do solution
- If the initial condi Example:

plane

plution to $\mathbf{x}^{\prime}=\mathrm{Ax}$ is
he phase plane)?
on is a straight line.

$$
\begin{gathered}
\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2} \\
\left.\binom{x_{1}(0)}{x_{2}(0)}=C_{1}\binom{1}{-2}+C_{2}\binom{1}{2}=\binom{6}{-12} \quad \begin{array}{l}
\text { •IVP solution: } \\
C_{1}=6, C_{2}=0
\end{array}\right)=e^{-t}\binom{6}{-12}
\end{gathered}
$$

Shapes of so

- When matrix $A h$
- What do solution
- If the initial condi Example:

plane

plution to $\mathbf{x}^{\prime}=A \mathbf{x}$ is
ee phase plane)?
on is a straight line.

$$
\begin{gathered}
\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2} \\
\binom{x_{1}(0)}{x_{2}(0)}=C_{1}\binom{1}{-2}+C_{2}\binom{1}{2}=\binom{6}{-12} \quad \begin{array}{l}
\text { •IVP solution: } \\
\binom{x_{1}}{x_{2}}=e^{-t}\binom{6}{-12}
\end{array} \\
C_{1}=6, C_{2}=0
\end{gathered}
$$

Shapes of so

- When matrix A h
- What do solution
- If the initial condi Example:

plane

plution to $\mathbf{x}^{\prime}=A \mathbf{x}$ is
ee phase plane)?
on is a straight line.

$$
\begin{gathered}
\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2} \\
\left.\binom{x_{1}(0)}{x_{2}(0)}=C_{1}\binom{1}{-2}+C_{2}\binom{1}{2}=\binom{6}{-12} \quad \begin{array}{l}
\text { •IVP solution: } \\
C_{1}=6, C_{2}=0
\end{array}\right)=e^{-t}\binom{6}{x_{2}}
\end{gathered}
$$

Shapes of so

- When matrix A h
- What do solution
- If the initial condi Example:

Shapes of so

- When matrix A h
- What do solution
- If the initial condi Example:

Shapes of so

- When matrix A h
- What do solution
- If the initial condi Example:

Shapes of solution curves in the phase plane

- Simple example to show general idea. $\quad \mathbf{x}^{\prime}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right) \mathbf{x}$

Shapes of solution curves in the phase plane

- Simple example to show general idea. $\quad \mathbf{x}^{\prime}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right) \mathbf{x}$

$$
\mathbf{v}_{\mathbf{1}}=\binom{1}{0}
$$

Shapes of solution curves in the phase plane

- Simple example to show general idea. $\quad \mathbf{x}^{\prime}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right) \mathbf{x}$

$$
\begin{aligned}
& \mathbf{v}_{\mathbf{1}}=\binom{1}{0} \\
& \mathbf{v}_{\mathbf{2}}=\binom{0}{1}
\end{aligned}
$$

Shapes of solution curves in the phase plane

- Simple example to show general idea. $\quad \mathbf{x}^{\prime}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right) \mathbf{x}$

$$
\begin{aligned}
& \mathbf{v}_{\mathbf{1}}=\binom{1}{0} \\
& \mathbf{v}_{\mathbf{2}}=\binom{0}{1} \\
& \mathbf{x}=C_{1} e^{\lambda_{1} t}\binom{1}{0}+C_{2} e^{\lambda_{2} t}\binom{0}{1}
\end{aligned}
$$

Shapes of solution curves in the phase plane

- Simple example to show general idea. $\quad \mathbf{x}^{\prime}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right) \mathbf{x}$

$$
\begin{aligned}
& \mathbf{v}_{\mathbf{1}}=\binom{1}{0} \\
& \mathbf{v}_{\mathbf{2}}=\binom{0}{1}
\end{aligned}
$$

$$
\mathbf{x}=C_{1} e^{\lambda_{1} t}\binom{1}{0}+C_{2} e^{\lambda_{2} t}\binom{0}{1}
$$

$$
x_{1}(t)=C_{1} e^{\lambda_{1} t}
$$

Shapes of solution curves in the phase plane

- Simple example to show general idea. $\quad \mathbf{x}^{\prime}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right) \mathbf{x}$

$$
\begin{aligned}
& \mathbf{v}_{\mathbf{1}}=\binom{1}{0} \\
& \mathbf{v}_{\mathbf{2}}=\binom{0}{1} \\
& \mathbf{x}=C_{1} e^{\lambda_{1} t}\binom{1}{0}+C_{2} e^{\lambda_{2} t}\binom{0}{1}
\end{aligned}
$$

$$
x_{1}(t)=C_{1} e^{\lambda_{1} t}
$$

$$
x_{2}(t)=C_{2} e^{\lambda_{2} t}
$$

Shapes of solution curves in the phase plane

- Simple example to show general idea. $\quad \mathbf{x}^{\prime}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right) \mathbf{x}$

$$
\begin{aligned}
& \mathbf{v}_{\mathbf{1}}=\binom{1}{0} \\
& \mathbf{v}_{\mathbf{2}}=\binom{0}{1} \\
& \mathbf{x}=C_{1} e^{\lambda_{1} t}\binom{1}{0}+C_{2} e^{\lambda_{2} t}\binom{0}{1}
\end{aligned}
$$

$$
x_{1}(t)=C_{1} e^{\lambda_{1} t}
$$

$$
x_{2}(t)=C_{2} e^{\lambda_{2} t}
$$

- Can we plot solutions in $\mathrm{x}_{1}-\mathrm{x}_{2}$ plane by graphing x_{2} versus x_{1} ?

Shapes of solution curves in the phase plane

- Simple example to show general idea. $\quad \mathbf{x}^{\prime}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right) \mathbf{x}$

$$
\begin{aligned}
& \mathbf{v}_{\mathbf{1}}=\binom{1}{0} \\
& \mathbf{v}_{\mathbf{2}}=\binom{0}{1}
\end{aligned}
$$

$$
\mathbf{x}=C_{1} e^{\lambda_{1} t}\binom{1}{0}+C_{2} e^{\lambda_{2} t}\binom{0}{1}
$$

$$
x_{1}(t)=C_{1} e^{\lambda_{1} t}
$$

$$
x_{2}(t)=C_{2} e^{\lambda_{2} t}
$$

- Can we plot solutions in $\mathrm{x}_{1}-\mathrm{x}_{2}$ plane by graphing x_{2} versus x_{1} ?

Shapes of solution curves in the phase plane

- Simple example to show general idea. $\quad \mathrm{x}^{\prime}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right) \mathbf{x}$

$$
\begin{array}{lrl}
\mathbf{v}_{\mathbf{1}}=\binom{1}{0} & \frac{1}{\lambda_{2}} \ln \left(\frac{x_{2}}{C_{2}}\right) & =\frac{1}{\lambda_{1}} \ln \left(\frac{x_{1}}{C_{1}}\right) \\
\mathbf{v}_{\mathbf{2}}=\binom{0}{1} & \ln \left(\frac{x_{2}}{C_{2}}\right) & =\frac{\lambda_{2}}{\lambda_{1}} \ln \left(\frac{x_{1}}{C_{1}}\right) \\
\mathbf{x}=C_{1} e^{\lambda_{1} t}\binom{1}{0}+C_{2} e^{\lambda_{2} t}\binom{0}{1} & \ln \left(\frac{x_{2}}{C_{2}}\right) & =\ln \left(\frac{x_{1}}{C_{1}}\right)^{\frac{\lambda_{2}}{\lambda_{1}}} \\
x_{1}(t)=C_{1} e^{\lambda_{1} t} & t=\frac{1}{\lambda_{1}} \ln \left(\frac{x_{1}}{C_{1}}\right) & x_{2}=C_{2}\left(\frac{x_{1}}{C_{1}}\right)^{\frac{\lambda_{2}}{\lambda_{1}}} \\
x_{2}(t)=C_{2} e^{\lambda_{2} t} & t=\frac{1}{\lambda_{2}} \ln \left(\frac{x_{2}}{C_{2}}\right) &
\end{array}
$$

- Can we plot solutions in $\mathrm{x}_{1}-\mathrm{x}_{2}$ plane by graphing x_{2} versus x_{1} ?

Shapes of solution curves in the phase plane

- Simple example to show general idea. $\quad \mathbf{x}^{\prime}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right) \mathbf{x}$
$x_{2}=C_{2}\left(\frac{x_{1}}{C_{1}}\right)^{\frac{\lambda_{2}}{\lambda_{1}}}$
- For the shape of solutions, we need to know the sign and size of $\frac{\lambda_{2}}{\lambda_{1}}$.

Shapes of solution curves in the phase plane

- Simple example to show general idea. $\quad \mathbf{x}^{\prime}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right) \mathbf{x}$
$x_{2}=C_{2}\left(\frac{x_{1}}{C_{1}}\right)^{\frac{\lambda_{2}}{\lambda_{1}}}$
- For the shape of solutions, we need to know the sign and size of $\lambda_{2}=-3 \lambda_{1}$

Shapes of solution curves in the phase plane

- Simple example to show general idea. $\quad \mathbf{x}^{\prime}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right) \mathbf{x}$
$x_{2}=C_{2}\left(\frac{x_{1}}{C_{1}}\right)^{\frac{\lambda_{2}}{\lambda_{1}}}$
- For the shape of solutions, we need to know the sign and size of
$\lambda_{2}=-3 \lambda_{1}$
$x_{2}=\frac{C}{x_{1}^{3}}$

Shapes of solution curves in the phase plane

- Simple example to show general idea. $\quad \mathbf{x}^{\prime}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right) \mathbf{x}$
$x_{2}=C_{2}\left(\frac{x_{1}}{C_{1}}\right)^{\frac{\lambda_{2}}{\lambda_{1}}}$
- For the shape of solutions, we need to know the sign and size of
$\lambda_{2}=-3 \lambda_{1}$

$\frac{\lambda_{2}}{\lambda_{1}}$
$x_{2}=\frac{C}{x_{1}^{3}}$

Shapes of solution curves in the phase plane

- Simple example to show general idea. $\quad \mathbf{x}^{\prime}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right) \mathbf{x}$
$x_{2}=C_{2}\left(\frac{x_{1}}{C_{1}}\right)^{\frac{\lambda_{2}}{\lambda_{1}}}$
- For the shape of solutions, y far from know the sign and size of
$\lambda_{2}=-3 \lambda_{1}$ x_{2} axis $x_{2}=\frac{C}{x_{1}^{3}}$

Shapes of solution curves in the phase plane

- Simple example to show general idea.
$x^{\prime}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right) \mathbf{x}$
$x_{2}\left(\frac{x_{1}}{C_{1}}\right)^{\frac{\lambda_{2}}{\lambda_{1}}}$
- For the shape of solutions, we need to know the sign and size of $\frac{\lambda_{2}}{\lambda_{1}}$. $\lambda_{2}=-3 \lambda_{1}$ $x_{2}=\frac{C}{x_{1}^{3}}$
$\begin{aligned} \lambda_{2} & =-\lambda_{1} \\ x_{2} & =\frac{C}{x_{1}}\end{aligned}$

Shapes of solution curves in the phase plane

- Simple example to show general idea.
$x_{2}^{\prime}=C_{2}\left(\frac{x_{1}}{C_{1}}\right)^{\frac{\lambda_{2}}{\lambda_{1}}}$
- For the shape of solutions, we need to know the sign and size of $\frac{\lambda_{2}}{\lambda_{1}}$.

Shapes of solution curves in the phase plane

- Simple example to show general idea. $\quad \mathbf{x}^{\prime}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right) \mathbf{x}$
$x_{2}=C_{2}\left(\frac{x_{1}}{C_{1}}\right)^{\frac{\lambda_{2}}{\lambda_{1}}}$
- For the shape of solutions, we need to know the sign and size of $\frac{\lambda_{2}}{\lambda_{1}}$. $\lambda_{2}=-3 \lambda_{1}$
$x_{2}=\frac{C}{x_{1}^{3}}$
$\lambda_{2}=-\lambda_{1}$
$x_{2}=\frac{C}{x_{1}}$
$\lambda_{2}=-\frac{1}{3} \lambda_{1}$
$x_{2}=\frac{C}{\sqrt[3]{x_{1}}}$

Shapes of solution curves in the phase plane

- Simple example to show general idea. $\quad \mathbf{x}^{\prime}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right) \mathbf{x}$
$x_{2}=C_{2}\left(\frac{x_{1}}{C_{1}}\right)^{\frac{\lambda_{2}}{\lambda_{1}}}$
- For the shape of solutions, we need to know the sign and size of

$$
\begin{aligned}
\lambda_{2} & =\frac{1}{3} \lambda_{1} \\
x_{2} & =C \sqrt[3]{x_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& \lambda_{2}=-\lambda_{1} \\
& x_{2}=\frac{C}{x_{1}} \\
& \lambda_{2}=-\frac{1}{3} \lambda_{1} \\
& x_{2}=\frac{C}{\sqrt[3]{x_{1}}}
\end{aligned}
$$

Shapes of solution curves in the phase plane

- Simple example to show general idea. $\quad \mathbf{x}^{\prime}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right) \mathbf{x}$
$x_{2}=C_{2}\left(\frac{x_{1}}{C_{1}}\right)^{\frac{\lambda_{2}}{\lambda_{1}}}$
- For the shape of solutions, we need to know the sign and size of

$$
\begin{aligned}
& \lambda_{2}=-3 \lambda_{1} \\
& x_{2}=\frac{C}{x_{1}^{3}} \\
& \lambda_{2}=-\lambda_{1} \\
& x_{2}=\frac{C}{x_{1}} \\
& \lambda_{2}=-\frac{1}{3} \lambda_{1} \\
& x_{2}=\frac{C}{\sqrt[3]{x_{1}}}
\end{aligned}
$$

$\frac{\lambda_{2}}{\lambda_{1}}$.

Shapes of solution curves in the phase plane

- Simple example to show general idea. $\quad \mathbf{x}^{\prime}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right) \mathbf{x}$
$x_{2}=C_{2}\left(\frac{x_{1}}{C_{1}}\right)^{\frac{\lambda_{2}}{\lambda_{1}}}$
- For the shape of solutions, we need to know the sign and size of

$$
1 \quad+\quad \lambda_{1}
$$

$$
\lambda_{2}=\frac{1}{3} \lambda_{1}
$$

$$
x_{2}=C \sqrt[3]{x_{1}}
$$

$$
\begin{aligned}
& \lambda_{2}=-\lambda_{1} \\
& x_{2}=\frac{C}{x_{1}} \\
& \lambda_{2}=-\frac{1}{3} \lambda_{1} \\
& x_{2}=\frac{C}{\sqrt[3]{x_{1}}}
\end{aligned}
$$

$$
\begin{aligned}
\lambda_{2} & =\lambda_{1} \\
x_{2} & =C x_{1}
\end{aligned}
$$

Shapes of solution curves in the phase plane

- Simple example to show general idea. $\quad \mathbf{x}^{\prime}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right) \mathbf{x}$
$x_{2}=C_{2}\left(\frac{x_{1}}{C_{1}}\right)^{\frac{\lambda_{2}}{\lambda_{1}}}$
- For the shape of solutions, we need to know the sign and size of

$$
\begin{aligned}
& \lambda_{2}=\frac{1}{3} \lambda_{1} \\
& x_{2}=C \sqrt[3]{x_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& \lambda_{2}=\lambda_{1} \\
& x_{2}=C x_{1}
\end{aligned}
$$

$$
\begin{aligned}
& \lambda_{2}=-\lambda_{1} \\
& x_{2}=\frac{C}{x_{1}} \\
& \lambda_{2}=-\frac{1}{3} \lambda_{1} \\
& x_{2}=\frac{C}{\sqrt[3]{x_{1}}}
\end{aligned}
$$

$$
\lambda_{2}=3 \lambda_{1}
$$

$$
x_{2}=C x_{1}^{3}
$$

Shapes of solution curves in the phase plane

- Simple example to show general idea. $\quad \mathbf{x}^{\prime}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right) \mathbf{x}$
$x_{2}=C_{2}\left(\frac{x_{1}}{C_{1}}\right)^{\frac{\lambda_{2}}{\lambda_{1}}}$
- For the shape of solutions, we need to know the sign and size of

$$
\begin{aligned}
& \lambda_{2}=\frac{1}{3} \lambda_{1} \\
& x_{2}=C \sqrt[3]{x_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& \lambda_{2}=-\lambda_{1} \\
& x_{2}=\frac{C}{x_{1}} \\
& \lambda_{2}=-\frac{1}{3} \lambda_{1} \\
& x_{2}=\frac{C}{\sqrt[3]{x_{1}}}
\end{aligned}
$$

$$
\begin{aligned}
\lambda_{2} & =\lambda_{1} \\
x_{2} & =C x_{1}
\end{aligned}
$$

$$
\lambda_{2}=3 \lambda_{1}
$$

stays near
X_{1} axis

$$
x_{2}=C x_{1}^{3}
$$

Shapes of solution curves in the phase plane

- Simple example to show general idea. $\quad \mathbf{x}^{\prime}=\left(\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right) \mathbf{x}$
$x_{2}=C_{2}\left(\frac{x_{1}}{C_{1}}\right)^{\frac{\lambda_{2}}{\lambda_{1}}}$
- For the shape of solutions, we need to know the sign and size of

$$
\begin{aligned}
& \lambda_{2}=\frac{1}{3} \lambda_{1} \\
& x_{2}=C \sqrt[3]{x_{1}}
\end{aligned}
$$

$$
\begin{aligned}
\lambda_{2} & =\lambda_{1} \\
x_{2} & =C x_{1}
\end{aligned}
$$

$\frac{\lambda_{2}}{\lambda_{1}}$

$$
\begin{aligned}
& \lambda_{2}=-\lambda_{1} \\
& x_{2}=\frac{C}{x_{1}} \\
& \lambda_{2}=-\frac{1}{3} \lambda_{1} \\
& x_{2}=\frac{C}{\sqrt[3]{x_{1}}}
\end{aligned}
$$

$$
\lambda_{2}=3 \lambda_{1}
$$

$$
x_{2}=C x_{1}^{3}
$$

Shapes of solution curves in the phase plane

- With more complicated solutions (evectors off-axis), tilt shapes accordingly.

$$
\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2}
$$

Shapes of solution curves in the phase plane

- With more complicated solutions (evectors off-axis), tilt shapes accordingly.

$$
\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2}
$$

Shapes of solution curves in the phase plane

- With more complicated solutions (evectors off-axis), tilt shapes accordingly.

$$
\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2}
$$

Shapes of solution curves in the phase plane

- With more complicated solutions (evectors off-axis), tilt shapes accordingly.

Shapes of solution curves in the phase plane

- With more complicated solutions (evectors off-axis), tilt shapes accordingly.

$$
\binom{x_{1}}{x_{2}}=\left[C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2}\right.
$$

Shapes of solution curves in the phase plane

- With more complicated solutions (evectors off-axis), tilt shapes accordingly.

$$
\binom{x_{1}}{x_{2}}=\left[C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2}\right.
$$

Shapes of solution curves in the phase plane

- With more complicated solutions (evectors off-axis), tilt shapes accordingly.

$$
\binom{x_{1}}{x_{2}}=\left[C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2}\right.
$$

Shapes of solution curves in the phase plane

- With more complicated solutions (evectors off-axis), tilt shapes accordingly.

Shapes of solution curves in the phase plane

- With more complicated solutions (evectors off-axis), tilt shapes accordingly.
$\binom{x_{1}}{x_{2}}=C_{1} e^{-t}\binom{1}{-2}+C_{2} e^{3 t}\binom{1}{2}$
- Going forward in time, the blue component shrinks slower than the green component grows so solutions appear closer to blue "axis" than to green "axis"

Shapes of solution curves in the phase plane

- Which phase plane matches the general solution

$$
\mathbf{x}=C_{1} e^{3 t}\binom{1}{3}+C_{2} e^{-t}\binom{1}{-1} ?
$$

(A)

(C)

(E) Explain, please.

Shapes of solution curves in the phase plane

- Which phase plane matches the general solution

$$
\mathbf{x}=C_{1} e^{3 t}\binom{1}{3}+C_{2} e^{-t}\binom{1}{-1} ?
$$

(C)

(E) Explain, please.

Shapes of solution curves in the phase plane

- Which phase plane matches the general solution

$$
\mathbf{x}=C_{1} e^{-3 t}\binom{1}{3}+C_{2} e^{-t}\binom{1}{-1} ?
$$

(B)

(D)

(C)
(E) Explain, please.

Shapes of solution curves in the phase plane

- Which phase plane matches the general solution

$$
\mathbf{x}=C_{1} e^{-3 t}\binom{1}{3}+C_{2} e^{-t}\binom{1}{-1} ?
$$

(B)

(D)

(C)
(E) Explain, please.

